Supporting Information for

Facile fabrication of amphiphobic surfaces on copper substrates with a mixed

modified solution

Ning Wang, Qing Wang, Shuangshuang Xu, Xu Zheng and Mingya Zhang* Institue of NanoEngineering, College of Civil Engineering and Architecture, Shandong University of Science and Technology, Qingdao 266590, China. E-mail: qwang@sdust.edu.cn.

Figure S1⁺. Photograph of the home-made WSA measurement equipment.

Figure S2⁺. SEM image of the bare copper substrate.

Figure S3[†]. EDS spectrum of (a) polished Cu substrate, (b) Ag@Cu surface, (c) STA@Ag@Cu surface, (d) PFOA@Ag@Cu surface, (e) STA&PFOA@Ag@Cu surface.

Figure S4⁺. FT-IR spectra of (a) STA@Ag@Cu surface, (b) PFOA@Ag@Cu surface, (c) STA&PFOA@Ag@Cu surface.

Figure S1[†] exhibits the photograph of the home-made WSA measurement equipment. Figure S2[†] demonstrates the morphology of the bare copper substrate. Figure S3[†] shows the chemical composition of different samples. Figure S4[†] is the FT-IR spectra of STA@Ag@Cu surface, PFOA@Ag@Cu surface and STA&PFOA@Ag@Cu surface.

Video S1[†]. Measurement process of WSA for the amphiphobic surface.

Video S2[†]. Adhesion of water droplets for the Cu@Ag@PFOA surface.

Video S3[†]. Self-cleaning progress for the amphiphloic surface.

Videos S1[†] exhibits the measurement process of WSA for the as-fabricated amphiphobic surface. Videos S2[†] demonstrates the adhesion of water droplets for the Cu@Ag@PFOA surface. Videos S3[†] shows the entire process to clean up the white chalk power on the as-fabricated amphiphloic surface.

M _F [%]	WCA[°]	OCA[°]	
0	1.8	3.0	
20	1.6	57.5	
40	5.1	7.3	
60	3.9	15.3	
80	3.4	2.8	
100	2.0	3.6	

Table S1† The trend of WCA and OCA with the increase of reaction time from 5 to15 min under the same PFOA content

Table S2^{\dagger} The trend of WCA and OCA with the increase of M_F from 0 to 100% under the same reaction time

time [min]	WCA[°]	OCA[°]
5	8.7	92.1
10	8.4	91.3
15	8.5	92.7
20	6.3	93.5

Table S1[†] exhibits the trend of WCA and OCA with the increase of reaction time from 5 to 15 min under the same PFOA content. Table S2[†] exhibits the trend of WCA and OCA with the increase of M_F from 0 to 100% under the same reaction time.