## **Supporting information**

# Porous 3D flower-like CoAl-LDH nanocomposite with excellent performance for NO<sub>2</sub> detection at room temperature

Zhi Liu<sup>a</sup>, Lei Teng<sup>a</sup>, Laifeng Ma<sup>a</sup>, Yang Liu<sup>a</sup>, Xueying Zhang<sup>a</sup>, Jialing Xue<sup>a</sup>, Muhammad Ikram<sup>a</sup>, Mohib ullah<sup>a</sup>, Li Li<sup>\*a,b</sup>, Keying Shi<sup>\*a</sup>

<sup>a</sup> Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Material Science,

Heilongjiang University, Harbin, 150080, P. R. China.

<sup>b</sup> Key Laboratory of Chemical Engineering Process&Technology for High-efficiency Conversion, Heilongjiang University, Harbin,

150080, P. R. China.

\* Corresponding author

E-mail: shikeying2008@163.com; lili1993036@hlju.edu.cn

Fax: +86 4518667 3647; Tel: +86 451 8660 9141

Samples prepared in this paper are given in Table S1.

| Samples | The amount of chemicals                                           | The molar ratio of chemicals  | The molar ratio of<br>Co: Al (EDS) | Condition                                |
|---------|-------------------------------------------------------------------|-------------------------------|------------------------------------|------------------------------------------|
| CAW     | Co: 0.8 mmol, Al: 0.4 mmol; U: 28 mmol                            | Co: Al: U= 2:1:70             | -                                  | Hydrothermal reaction<br>at 90°C for 6 h |
| CA-1    | Co: 0.4 mmol, Al: 0.4 mmol, U: 28 mmol, NH <sub>4</sub> F: 4 mmol | Co: Al: U: NH <sub>4</sub> F= | 3.40:1                             | Hydrothermal reaction<br>at 90°C for 6 h |
|         |                                                                   | 1:1:70:10                     |                                    |                                          |
| CA-2    | Co: 0.8 mmol, Al: 0.4 mmol, U: 28 mmol, NH <sub>4</sub> F: 4 mmol | Co: Al: U: NH <sub>4</sub> F= | 3.65:1                             | Hydrothermal reaction<br>at 90°C for 6 h |
|         |                                                                   | 2:1:70:10                     |                                    |                                          |
| CA-3    | Co:1.2 mmol, Al: 0.4 mmol, U: 28 mmol, NH <sub>4</sub> F: 4 mmol  | Co: Al: U: NH <sub>4</sub> F= | 3.80:1                             | Hydrothermal reaction<br>at 90°C for 6 h |
|         |                                                                   | 3:1:70:10                     |                                    |                                          |
| C-2     | Co: 0.8 mmol, U: 28 mmol, NH <sub>4</sub> F: 4 mmol               | Co: U: NH <sub>4</sub> F=     | -                                  | Hydrothermal reaction<br>at 90°C for 6 h |
|         |                                                                   | 1:35:5                        |                                    |                                          |
| A-2     | Al: 0.4 mmol, U: 28 mmol, NH <sub>4</sub> F: 4 mmol               | Al: U: NH <sub>4</sub> F=     | -                                  | Hydrothermal reaction<br>at 90°C for 6 h |
|         |                                                                   | 1:70:10                       |                                    |                                          |
|         | Two step reactions product: C-2 was synthesized by                |                               |                                    |                                          |

#### Table S1. Samples prepared in this paper

1:70:10

Co: Al: U:  $NH_4F=$ hydrothermal reaction, then, C-2 reacted with Al (0.4 2:1:70:10

CCA-2 mmol) to obtain CCA-2 at the same conditions

> Two step reactions product: the A-2 (solution) was synthesized by hydrothermal reaction with Al: (0.4 Co:Al:U:NH<sub>4</sub>F=2:

AC-2 mmol), U: (28 mmol), and NH<sub>4</sub>F (4 mmol); then the A-2 reacted with Co: (0.8 mmol), hydrothermal reaction at the same conditions again

Hydrothermal reaction at 90°C for 6 h

Hydrothermal reaction at 90°C for 6 h

Co:  $Co(NO_3)_2 \bullet 6H_2O$ ; Al: Al(NO<sub>3</sub>)<sub>3</sub>  $\bullet 9H_2O$ ; U: urea.



Fig. S1. EDS spectra of (a) CA-1;(b) CA-3

In order to study the formation of CoAl-LDHs under the hydrothermal condition, a series of experiments on reaction time were carried out. As shown in Fig. S2a, XRD diffraction patterns manifested that the CoAl-LDHs had been generated in the early stage of coprecipitation for 1 h, but the intensity of the diffraction peak was very weak. Initially,  $\alpha$ -Co(OH)<sub>2</sub> was formed (Fig. S2b), finally, it was subsequently converted into CoAl-LDHs (Fig. S2a). When hydrothermal time was increased from 2 h to 6 h, different morphologies of flower could be observed (Fig. S2 (d-h)). And the nanosheets of 3D flower-like became into ultrathin structure increased with hydrothermal time increasing (Fig. S2 (g, h)). This may be due to the etching of NH<sub>4</sub>F.<sup>1</sup>



Fig. S2. XRD diffraction patterns (a) different hydrothermal time; (b) different addition sequences; SEM images (c-h) different

hydrothermal time; (i) C-2; (j) CCA-2 (two step reactions product of C-2, see Table S1); (k) AC-2 (two step reactions product of A-2) (see Table S1).

Fig. S3a displayed that carbonate ions inserted the LDHs interlamination, FT-IR spectra consistent well with the

 $v_3$  vibrational band of carbonate ions at 1367 and 723cm<sup>-1</sup>, this indicating that the pure carbonate ions intercalated in

LDHs had been prepared after 2 h reaction time.<sup>2</sup>

Experiments of change feeding order were carried out in order to observe the impact on structure and

morphology of the CoAl-LDHs. XRD diffraction peaks (Fig. S2b) of C-2 could be indexed to  $\alpha$ -Co(OH)<sub>2</sub> (JCPDS

Card NO. 48-0083), and its structure was the urchin-like (Fig. S2i) which could contain carbonate ions and nitrate ions in the interlayer gallery (Fig. S3b). With the follow-up experiment, XRD pattern of CCA-2 (Fig. S2b) indicated that the product was composed of  $\alpha$ -Co(OH)<sub>2</sub> and CoAl-LDHs, and the structural characteristic of it was urchin-like and flower-like (Fig. S2j). In parallel, the other experiment was carried out: the precursor only contained Al(NO<sub>3</sub>)<sub>3</sub> •9H<sub>2</sub>O for reaction, then, the cobalt nitrate was added into the [Al<sub>13</sub>(OH)<sub>32</sub>(H<sub>2</sub>O)]<sup>7+</sup> solution to obtained AC-2,<sup>3</sup> and endly it was constructed by 3D flower-like with many ultrathin nanosheets (Fig. S2k), similar to CA-2 (Fig. S2h).



**Fig. S3.** FT-IR spectra of (a) different reaction times (0.8 mmol of Co(NO<sub>3</sub>)<sub>2</sub>•9H<sub>2</sub>O, 0.4 mmol Al(NO<sub>3</sub>)<sub>3</sub> •9H<sub>2</sub>O and NH<sub>4</sub>F and 28 mmol of urea were dissolved in 40 mL deionized water, stirring for 0.5 h, then hydrothermal synthesis was performed at 90 °C for 2, 3, 4, 5 and 6 h, respectively); (b) C-2, CCA-2; (c) AC-2 and CA-2.

| Sample | $S_{BET}(m^2g^{-1})$ | V <sub>pores</sub> (cm <sup>3</sup> g <sup>-1</sup> ) | D <sub>pores</sub> (nm) |
|--------|----------------------|-------------------------------------------------------|-------------------------|
| CA-1   | 11.84                | 0.02                                                  | 18.85                   |
| CA-2   | 49.45                | 0.10                                                  | 8.25                    |
| CA-3   | 24.32                | 0.06                                                  | 9.66                    |

Table S2. Specific BET surface area, pore volume and average pore size of the CA-1, CA-2 and CA-3.



Fig. S4. The SEM images of CAW sample.



Fig. S5 (a) TEM and (b) HRTEM images of CAW sample.

| Table 56. 015 results of sumples |      |                    |             |  |  |  |  |
|----------------------------------|------|--------------------|-------------|--|--|--|--|
| Sample                           | Name | Peak position (eV) | Peak area % |  |  |  |  |
| CA-1                             | 1    | 530.9              | 81.36       |  |  |  |  |
|                                  | 2    | 532.5              | 18.64       |  |  |  |  |
| CA-2                             | 1    | 530.9              | 75.09       |  |  |  |  |
|                                  | 2    | 532.2              | 24.91       |  |  |  |  |
| CA-3                             | 1    | 530.9              | 79.81       |  |  |  |  |
|                                  | 2    | 532.6              | 20.19       |  |  |  |  |

### **Table S3**. O1s results of samples

Table S4. The response, response time and recovery time results of CoAl-LDH sensors under the different NO<sub>2</sub> concentrations at room

| temperature           |      |                    |                    |       |                    |                    |       |                    |                    |
|-----------------------|------|--------------------|--------------------|-------|--------------------|--------------------|-------|--------------------|--------------------|
| Samples               |      | CA-1               |                    |       | CA-2               |                    |       | CA-3               |                    |
| NO <sub>2</sub> (ppm) | Res. | T <sub>R1</sub> /s | T <sub>R2</sub> /s | Res.  | T <sub>R1</sub> /s | T <sub>R2</sub> /s | Res   | T <sub>R1</sub> /s | T <sub>R2</sub> /s |
| 100                   | 5.29 | 3.3                | 16.7               | 26.61 | 1.3                | 14.6               | 20.39 | 4                  | 29                 |
| 50                    | 4.15 | 4                  | 16                 | 22.56 | 2                  | 14                 | 18.78 | 4                  | 28.6               |
| 30                    | 3.52 | 4                  | 15.3               | 18.78 | 2                  | 13.3               | 14.56 | 4.3                | 25.3               |
| 10                    | 2.46 | 5                  | 15                 | 13.85 | 2.7                | 12.7               | 9.32  | 4.7                | 26                 |
| 5                     | 2.21 | 6                  | 14                 | 11.22 | 3.3                | 12                 | 5.51  | 4.7                | 22                 |
| 3                     | 1.97 | 6.7                | 14.6               | 8.24  | 3.3                | 11.3               | 3.36  | 4.7                | 18                 |
| 1                     | 1.56 | 7                  | 14                 | 6.85  | 3.7                | 10                 | 1.97  | 6.7                | 16.7               |
| 0.5                   | 1.32 | 9                  | 16.7               | 4.12  | 3.7                | 8.7                | 1.58  | 7                  | 15.3               |

| 0.3  | 1.28 | 9  | 18   | 3.03 | 4.6 | 6.7 | 1.37 | 7  | 13.3 |
|------|------|----|------|------|-----|-----|------|----|------|
| 0.1  | 1.21 | 10 | 16   | 2.08 | 4.6 | 6   | 1.33 | 9  | 12   |
| 0.05 | 1.15 | 10 | 14.7 | 1.53 | 4.6 | 6   | 1.27 | 9  | 10   |
| 0.03 | 1.12 | 11 | 12   | 1.38 | 4.6 | 5.3 | 1.22 | 10 | 9.7  |
| 0.01 | 1.12 | 12 | 12   | 1.29 | 5.3 | 4.6 | 1.13 | 10 | 8.3  |

\*Res.: Response T<sub>R1</sub>: Response time T<sub>R2</sub>: Recovery time



Fig. S6. (a) Response curves of sensors versus various NO<sub>2</sub> concentration from 0.01 to 100ppm;(b) Amplified response curves in low concentration at room temperature.



Fig. S7. NO<sub>2</sub>-TPD comparative of CA-1, CA-2, CA-3 and BCS

Note: the BCS meant the blank contrast of fresh CA-2, which was directly raised temperature without adsorption any gas, the TPD peak represented the desorption product of  $H_2O$  or  $OH^2$ .

(NO<sub>2</sub>-TPD conductions: adsorption NO<sub>2</sub> for 1 h at 25 °C, then purge 1 h by N<sub>2</sub> at 25 °C, and then, a heating rate of 10 °C  $\cdot$  min<sup>-1</sup> under N<sub>2</sub>)



Fig. S8. The dynamic response-recovery cycle curves of CoAl-LDHs based sensors. (a) CA-1; (b) CA-2; (c) CA-3; (d) CAW at RT.

| Various kinds of sensing materials | Res.  | T <sub>R1</sub> /s | T <sub>R2</sub> /s | Minimum detection<br>limit (ppm) |
|------------------------------------|-------|--------------------|--------------------|----------------------------------|
| A-2                                | 1.67  | 4.0                | 10.0               | 1                                |
| C-2                                | 13.80 | 1.7                | 12.7               | 0.03                             |
| CCA-2                              | 1.87  | 0.7                | 14.7               | 0.05                             |
| AC-2                               | 24.34 | 2.0                | 16.0               | 0.01                             |
| CA-1                               | 5.29  | 3.3                | 16.7               | 0.01                             |
| CA-2                               | 26.61 | 1.3                | 14.6               | 0.01                             |
| CA-3                               | 20.39 | 4.0                | 29.0               | 0.01                             |
| CAW                                | 4.40  | 4.0                | 31.6               | 0.3                              |

Table S5. Gas sensing performance and minimum detection limit comparison of samples to 100 ppm NO<sub>2</sub> at room temperature.

\*Res.: Response T<sub>R1</sub>: Response time T<sub>R2</sub>: Recovery time

Table S6. The response, response time and recovery time results of the other four sensor materials under different NO<sub>2</sub> concentrations at

| room temperature.     |      |                    |                    |       |                    |                    |      |                    |                    |       |                    |                    |
|-----------------------|------|--------------------|--------------------|-------|--------------------|--------------------|------|--------------------|--------------------|-------|--------------------|--------------------|
| Sample                |      | A-2                |                    |       | <b>C-2</b>         |                    |      | CCA-2              |                    |       | AC-2               |                    |
| NO <sub>2</sub> (ppm) | Res. | T <sub>R1</sub> /s | T <sub>R2</sub> /S | Res.  | T <sub>R1</sub> /s | T <sub>R2</sub> /s | Res. | T <sub>R1</sub> /s | T <sub>R2</sub> /s | Res.  | T <sub>R1</sub> /s | T <sub>R2</sub> /s |
| 100                   | 1.67 | 4.0                | 10.0               | 13.80 | 1.7                | 12.7               | 1.87 | 0.7                | 14.7               | 24.39 | 2.0                | 16.0               |
| 50                    | 1.50 | 0.7                | 22.6               | 12.11 | 2.0                | 12.7               | 1.71 | 0.7                | 16.0               | 22.38 | 2.3                | 14.7               |
| 30                    | 1.38 | 1.3                | 24.7               | 10.11 | 2.0                | 15.3               | 1.66 | 1.3                | 18.0               | 17.79 | 2.0                | 12.0               |
| 10                    | 1.20 | 0.7                | 18.7               | 8.21  | 2.0                | 16.7               | 1.54 | 0.7                | 18.7               | 12.89 | 1.3                | 11.3               |
| 5                     | 1.14 | 1.3                | 16.0               | 5.92  | 2.0                | 17.3               | 1.50 | 0.7                | 18.7               | 10.32 | 2.7                | 9.3                |
| 3                     | 1.08 | 1.7                | 22.7               | 3.56  | 4.0                | 10.0               | 1.20 | 2.0                | 21.3               | 7.63  | 2.7                | 8.6                |
| 1                     | 1.04 | 4.0                | 9.3                | 2.59  | 6.7                | 15.3               | 1.14 | 2.0                | 27.3               | 3.30  | 3.3                | 11.3               |
| 0.5                   |      |                    |                    | 1.71  | 4.7                | 18.0               | 1.13 | 3.3                | 18.0               | 2.35  | 4.7                | 12.7               |
| 0.3                   |      |                    |                    | 1.39  | 4.0                | 28.0               | 1.13 | 2.0                | 23.3               | 2.04  | 10.7               | 20.7               |
| 0.1                   |      |                    |                    | 1.36  | 4.0                | 37.3               | 1.12 | 3.3                | 24.0               | 1.56  | 8.7                | 34.7               |
| 0.05                  |      |                    |                    | 1.26  | 3.7                | 45.3               | 1.06 | 2.7                | 37.3               | 1.39  | 2.7                | 25.3               |
| 0.03                  |      |                    |                    | 1.17  | 4.3                | 40.7               |      |                    |                    | 1.29  | 2.0                | 26.7               |
| 0.01                  |      |                    |                    |       |                    |                    |      |                    |                    | 1.19  | 4.6                | 37.3               |

\*Res.: Response T<sub>R1</sub>: Response time T<sub>R2</sub>: Recovery time

Table S7. The carrier concentration and the fitted impedance parameters of CA-1, CA-2, CA-3 and CAW.

| Samples | $N_a$ | $R_s(\Omega)$ | $R_1(\Omega)$ | $R_{ct}(\Omega)$ |
|---------|-------|---------------|---------------|------------------|
|---------|-------|---------------|---------------|------------------|

| CA-1 | $2.31 \times 10^{15}$ | 14.37 | 266.9 | 3622 |
|------|-----------------------|-------|-------|------|
| CA-2 | $9.80 	imes 10^{15}$  | 12.33 | 247.9 | 2480 |
| CA-3 | $5.82 \times 10^{15}$ | 14.46 | 298.4 | 2984 |
| CAW  | $3.08 \times 10^{15}$ | 14.28 | 554.6 | 4128 |



Fig. S9. The equivalent circuit model of CoAl-LDHs modified electrodes.

 $R_s$  represents the resistance between the uncompensated electrolyte, separator and electrode, where  $R_{ct}$  is the charge-transfer resistance at active material interface, and CPE is constant phase angle element involving double layer capacitance.

#### **References:**

1 H.X. Gao, Y. Cao, Y. Chen, Z. Liu, M.L. Guo, S.J. Ding, J.C. Tu, J.L. Qi, Ultrathin NiFe-layered double hydroxide decorated NiCo<sub>2</sub>O<sub>4</sub> arrays with enhanced performance for supercapacitors, Applied Surface Science 465 (2019) 929–936.

2 Z.B. Tian, Q.Y. Li, J.Y. Hou, L. Pei, Y. Li, S.Y. Ai, Platinum nanocrystals supported on CoAl mixed metal oxide nanosheets derived from layered double hydroxides as catalysts for selective hydrogenation of cinnamaldehyde, Journal of Catalysis 331 (2015) 193–202.

3 F. Peng, H. Li, D.H. Wang, P. Tian, Y.X. Tian, G.Y. Yuan, D. M. Xu, X.Y. Liu, Enhanced Corrosion Resistance and Biocompatibility of Magnesium Alloy by Mg-Al-Layered Double Hydroxide, ACS Appl. Mater. Interfaces 2016, 8, 35033–35044.