Supporting Materials for

Synergistic degradation of PNP via coupling H₂O₂ with persulfate catalyzed by nano zero valent iron

Jiangkun Du ^a, Yang Wang ^a, Faheem ^a, Tiantian Xu ^a, Han Zheng ^b, Jianguo Bao ^{*, a}

a. School of Environmental Studies, China University of Geosciences,

Wuhan 430074, P. R. China

b. Hubei Provincial Key Laboratory of Mining Area Environmental Pollution Control and

Remediation, Hubei Polytechnic University, Huangshi, People's Republic of China

*Corresponding author:

Dr. Jianguo Bao

Email: bjianguo@cug.edu.cn, Tel. (+82)-2-9585426; Fax (+82)-2-9585447

Fig.S1 The SEM image of nZVI.

Fig. S2

Fig.S2 The XRD pattern of nZVI.

Fig. S3

Fig.S3 EPR spectra obtained for $nZVI/PDS/H_2O_2$ dual oxidation systems. Reaction condition: [nZVI]₀=0.2 g/L, [PNP]₀=20 mg/L, [H₂O₂/PDS (1:1)]₀ = 2 mmol/L.

Fig. S4

Fig.S4 Time-profile production of p-HBA from the oxidation of BA in the nZVI/PDS/H₂O₂ system. Reaction condition: $[nZVI]_0=0.2 \text{ g/L}$, $[PNP]_0=20 \text{ mg/L}$, $[H_2O_2/PDS (1:1)]_0 = 2 \text{ mmol/L}$, [BA]=5 mmol/L, initial pH=7.

Fig. S5

Fig.S5 PNP degradation in nZVI/H₂O₂ and nZVI/PDS oxidation systems with different oxidant dosage. Reaction condition: $[nZVI]_0 = 0.2 \text{ g/L}, [PNP]_0 = 20 \text{ mg/L}, \text{ initial pH=7}.$

Fig.S6 The LC-HRMS spectra and mass spectrum of PNP intermediates in the nZVI/H₂O₂/PDS dual oxidation system.

Table. S1

No.	Retention time (min)	m/z	intermediates
1	2.02	115.0026	fumaric acid
2	2.14	88.9869	oxalic acid
3	2.14	170.0084	5-nitryl-1,2,3-hydroxyquinol
4	3.70	122.0236	p-nitrosophenol
5	4.50	154.0135	4-nitrocatachol
6	8.33	183.0036	2,4-dinitrophenol

Table S1. Detected degradation intermediates of p-nitrophenol