Electronic Supplementary Information

Nanoscale iron (oxyhydr) oxides modified carbon nanotube filter for rapid and effective Sb(III) removal

Yanbiao Liu,^{*ab} Jinyu Yao,^a Fuqiang Liu,^a Chensi Shen,^{ab} Fang Li,^{ab} Bo Yang,^{*a} Manhong Huang,^{ab} and Wolfgang Sand^{ac}

^a Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University,
2999 North Renmin Road, Shanghai 201620, P. R. China. E-mail: yanbiaoliu@dhu.edu.cn; yangbo@dhu.edu.cn; Tel: +86 21 6779 8752.

^b Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, P. R. China.

^c Institute of Biosciences, Freiberg University of Mining and Technology, Freiberg
 09599, Germany

Bed volume calculations

To quantitatively evaluate filtration capabilities, single-pass filtration was conducted under the experimental condition that a 100 or 200 μ g/L of Sb(III) solution was pumped though a iron (oxyhydr) oxides/CNT filter at pH 7, and the effluent was no longer returned, the filter bed volume was 0.113 mL, and empty bed contact time (EBCT) was 4.5 s at a fixed flow rate of 1.5 mL/min. The number of bed volume was calculated by following equation:

 $Bed Volume = \frac{1.5 \times t}{0.113}$

Where t is filtration time (min).

Method of DFT calculations

Density function theory calculation were p erformed by using the CP2K package.¹ PBE functional² with Grimme D3 correction³ was used to describe the systemm. Unrestricted Kohn-Sham DFT has been used as the electronic structure method in the framework of the Gaussian and plane waves method.^{4, 5} The Goedecker-Teter-Hutter (GTH) pseudopotentials,^{6,7} DZVPMOLOPT-GTH basis sets⁴ were utilized to describe the molecules. A plane-wave energy cut-off of 500 Ry has been employed. It's known that the generalized gradient functional fails to reproduce the correlated elements, and the "+U" Hubbard correction⁸ improve the electronic descriptions. Accordingly, we adopt DFT+U method with effective U value is equal to 5 eV for Fe 3d states.⁹

A six atomic layer (4×4) hematite Fe₂O₃ (001) surface and six-layer α FeOOH (100) surface have been used in the simulation. As the Fe₂O₃ is anti-ferromagnetic, we initially set the magnetic moments layer by layer as the spin polarization of neighboring layers are opposite. A vacuum of 15 Å has been added along Z-direction to decouple the interaction between images. The adsorption energies (E_{ad}) is calculated using:

 $E_{ad} = (E_{sur} + E_{mol}) - E_{mol/sur}$

Where the $E_{mol/sur}$ is the total energy of the adsorbate binding with surface, E_{sur} and E_{mol} are the isolated energy of surface and molecule, respectively.

Reference

- J. Hutter, M. Iannuzzi, F. Schiffmann and J. VandeVondele, Wires. Comput. Mol. Sci., 2014, 4, 15-25.
- 2. J. Perdew, K. Burke and M. Ernzerhof, phys. Rev. lett., 1996, 77, 3865.
- 3. S.Grimme, J. comput. Chem., 2006, 27,1787–1799.
- 4. J. VandeVondele and J. Hutter, J. chem. phys., 2007, 127, 114105,
- 5. J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, and J. Hutter, *Comput. Phys. Commun.*, 2005, **167**, 103–128.
- 6. S. Goedecker, M. Teter, and J. Hutter, Phys. Rev. B, 1996, 54, 1703.
- 7. C. Hartwigsen, S. Gœdecker, and J. Hutter, Phys. Rev. B, 1998, 58, 3641.
- 8. S. Dudarev, G. Botton, S. Savrasov, C. Humphreys, and A. Sutton, Phys. Rev. B, 1998, 57, 1505.
- 9. L. Wang, T. Maxisch, and G. Ceder, Phys. Rev. B, 2006, 73, 195107.

Fig. S1 Schematics of filtration apparatus: (1) a ring-shaped silicone rubber separator and seal; (2) a iron (oxyhydr) oxides/CNT Filter; (3) a PTFE membrane support.

Fig. S2 XRD patterns of the CNT and iron (oxyhydr) oxides/CNT.

Fig. S3 TGA image of the CNT and iron (oxyhydr) oxides/CNT.

Fig. S4 CNT and iron (oxyhydr) oxides/CNT network contact angle measurement after 30s. Both CNT network and iron (oxyhydr) oxides/CNT network were hydrophobic with contact angle of 111° and 101° respectively.

Fig. S5 XPS Survey scan for iron (oxyhydr) oxides/CNT filter (a) After Sb(III) adsorption and (b)after Sb(V) adsorption.

Fig. S6 Sb(III) sorption on the pure CNT filter in recirculation mode at a flow rate of 3 mL/min.

Fig. S7 The change in concentration of Sb with time when $100mL 900\mu g/L$ Sb solution was reacted with a iron (oxyhydr) oxides/CNT filter, and experiment was conducted in batch mode and recirculation mode (flow rate of 1.5mL/min, 3mL/min and 6 mL/min).

Fig. S8 Iron (oxyhydr) oxides/CNT Sb sorption isotherms. Experiments were conducted in recirculation mode for 12 h using a 100 mL reservoir, flow rate was 3ml/min. Experimental data are fittings to the Freundlich isotherm model, and correlation coefficients>99%.

Fig. S9 HAADF image (a); EDS mapping (b) of Sb-loaded iron (oxyhydr) oxides/CNT; and the corresponding EDS elemental C(c), O(d), Fe(e) and Sb(f) maps.

Fig. S10 The projected density of state for Sb adsobed on FeOOH and Fe_2O_3 surface. Dos of isolated Sb(V) (a), isolated Sb(III)(b), Sb(III) on FeOOH(c), Sb(V) on FeOOH(d), Sb(III) on Fe₂O₃(e), Sb(V) on Fe₂O₃(f).