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S1. Damping radii definition 

 The definition of damping radii in the discussion of this paper is the effective multibody 

screening radii. It is different from the radii that describe the location of energy minimum in the 

force field. The nominal interaction energy  
6

6 dampC / r  should increase with increasing C6. With 

this observation, a linear relation between ln(C6) and ln(rdamp) is possible. We developed the 

following relations to calculated the damping radii: 
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The notation “ref” means the property of a free atom, “NG” means the property of the noble gas 

free atom in the same period of the periodic table of elements. NG

vdWr  is the van der Waals radius of 

the noble gas atoms from Tang and Toennies.S1 Eqn (S1)–(S2) cause the nominal interaction 

energy  
6

6 dampC / r  to vary as  
1/3

6~ C , thereby providing a smooth increase in the nominal 

interaction energy as 6C  increases.  

 The damping radii for elements 87–109 are calculated using extrapolated reference value 

for Og (element 118) using the following equations: 
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The assumption is that there are same number of elements from Xe to Rn and Rn to Og, hence the 

ratio of the C6 and damping radii of Xe/Rn and Rn/Og should be roughly the same. 

 Although not used in any subsequent calculations presented in this article, a set of screened 

damping radii are also computed and printed: 
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These screened atom damping radii may be useful to develop correlations for the non-bonded (e.g., 

Lennard-Jones or related) parameters used to construct force fields, but a further analysis is beyond 

the scope of the current article.  

S2. Def2QZVPPDD basis set definition 

 The def2QZVPPDD basis set we used for CCSD calculations is modified from the 

def2QZVPPD basis setS2 obtained from  the EMSL Basis Set ExchangeS3, S4. We added another 

set of diffuse functions to s, p, d, f functions by dividing the smallest α of the corresponding 

functions by 2.5. No diffuse functions were added to g. For example, in the basis set of Cl the 

smallest α for s basis functions is 0.054234565513, so the added diffuse function for s has α = 

0.0216938262. For this same example, the smallest α for p basis functions is 0.027256146018, so 
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the added diffuse function for p has α = 0.0109024584. The same procedure is used for d and f but 

not g. For elements with relativistic effective core potential (RECP), def2QZVPPDD uses exactly 

the same RECP as def2QZVPPD. The enclosed def2QZVPPDD.gbs and def2QZVPPDD.pseudo 

files contain the full basis set and RECP parameter tabulations, respectively.  

S3. M scaling formula for wp 

 Table S1 contains a dimensional analysis for our isolated atom scaling law. , C6, and wp 

scale approximately proportional to the isolated atom’s effective radius raised to the 4, 6, and -2 

powers, respectively. 

Table S1: Dimensional analysis for our isolated atom scaling law. The number in each column is 

the effective exponent in the scaling law. The number in parentheses is the rounded exponent.  

 Nelec r 

 0.4607 (0.5) 3.8517 (4) 

C6 1.0823 (1) 5.9131 (6) 

wp 0.1608 (0) -1.7903 (-2) 

 

 In contrast, the polarizability of a buried atom scales approximately proportional to the 

atom’s effective radius raised to the power 3. As explained in the main text, this polarizability 

scaling for buried atoms has its physical origins in the Clausius-Mossotti relation and conduction 

limit upper bound. Mathematically, our method imposes this change in radial moment power from 

surface to buried atom polarizability using m scaling. As explained in the main text, m = 1 for an 

isolated atom and m 0  for a buried atom. 

 The wp scaling of a partially or fully buried atom can be inferred using analytic 

continuation from m = 1 to 0 m 1  . Imagine a process in which all inter-nuclear distances in the 

material are scaled by a factor   . Starting with 1000 , the atoms in the material will be fully 

separated (i.e., m=1). We then imagine a hypothetical process in which   is smoothly decreased 

until 1   (i.e., the true material is recovered). This hypothetical process corresponds to smoothly 

changing from m = 1 (when 1000 ) to 0 m 1   (when 1  ). By tracking the wp changes 

along this hypothetical path, we can recover the wp scaling law for the partially or fully buried 

atom.  

 For all atoms in materials, C6 scales approximately proportional to the atom-in-material’s 

effective radius raised to the power 6. Hence,  C6 scales approximately proportional 2  for a buried 

atom. In contrast, C6 scales approximately proportional to 3/2  for a free atom (see reference S5 

and our isolated atom scaling law).  

 To track these wp changes, we must first relate them to the polarizability scaling. From 

 2

6wp 4C 3   it follows that wp scales approximately proportional to 1/2   for a free atom 

and nearly independent of   for a buried atom.  For convenience, let us define   as the coordinate 

(i.e., temporary value of m) along the continuous path from 1 to the true m. Then, we can expand 

wp as 
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where 
refwp   is the value of wp from the isolated atom scaling law (i.e., when m=1) and the path 

is described by 1 1 d    , 2 1 2d    , 3 1 3d    , … to m. Representing eqn (S6) in 

logarithmic format gives 
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When 1   (i.e., starting with isolated atom), changes in wp scale locally proportional to 1/2 . 

When 0   (e.g., ending with buried atom), then changes in wp scales locally independent of  . 

Between these two extremes, changes in wp scale locally proportional to /2 . 

 From the article’s main text, 
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Substituting eqn (S8) into (S7) and integrating gives  

    
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Integrating eqn (S9) yields 
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S4. Plot of the smooth cutoff function 

 

Figure S1: Plot of the smooth cutoff function controlling the dipole-dipole interactions. This 

function gives continuous first and second derivatives at the cutoff radius of 50 bohr.  
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