Supporting information

Effect of nitrogen co-doping with ruthenium on the catalytic performance of Ba/Ru-N-MC

catalysts for ammonia synthesis

Yongcheng Ma,^a Guojun Lan,^a Xiaolong Wang,^a Geshan Zhang,^a Wenfeng Han,^a Haodong Tang,^a

Huazhang Liu,^a Ying Li,^a*

^a Institute of Industrial Catalysis, Zhejiang University of Technology, Chaowang Road 18,

Hangzhou, China

*Corresponding author: Prof Ying Li, Tel: (+86)-571-88320766; E-mail: liying@zjut.edu.cn

Table S1 Textural properties and Ru dispersion of the Ru-MC and Ba/Ru-MC samples.

Samples	Ru ^a	S. A. ^b	P. V. ^c	P. D. ^d	CO uptake	Dispersion	Particle size
	(wt%)	$(m^2 \cdot g^{-1})$	$(cm^{3} \cdot g^{-1})$	(nm)	$(\mu mol/g)$	(%)	(nm)
Ru-MC	4.59	928	1.44	9.2	154.2	34.2	3.9
Ba/Ru-MC	4.21	920	1.41	9.2	140.8	34.0	3.9

^a Ru wt% was measured by the spectrophotometric method. ^b The specific surface area. ^c The total pore volume. ^d Pore diameter calculated by the desorption branches of the isotherms using the BJH method.

Table S2 Comparison of ammonia synthesis reaction activity reported in other literatures.

Samplas	Ru	Reaction rate	TOF	Temp.	Pressure	GHSV	Daf	
Samples	(%)	$(mmol \cdot g^{-1} \cdot h^{-1})$	(s^{-1})	(°C)	(MPa)	(h^{-1})	KCI.	
Ba/Ru-N-MC	3.75	175	0.387	450	10	10000	This work	
Ba/Ru-N-MC	3.75	79	0.160	400	10	10000	This work	
Ba-Ru/N-MC	4.07	27	0.034	400	10	10000	This work	
Ba-Ru/CNTs	4.0	69	-	450	10	10000	[1]	
Ba-Ru/AC	9.1	-	0.098	400	6.3	6500	[2]	
Ru-Ba/AC	4.0	-	0.048	400	3	3000	[3]	
Ru-Ba/ACF	4.0	-	0.030	400	3	3000	[4]	
Ru-Ba/CMS	4.0	-	0.089	400	3	3000	[4]	

Catalysts	Peak Temperature (°C) of various possible species							
	18/H ₂ O	18/H ₂ O	15/CH ₄	$18/H_2O$	28/CO	44/CO ₂		
	RuO _x +	$\mathbf{D}_{\mathbf{n}}(\mathbf{OU})$	C+H ₂	SFGs+H ₂	SFGs	SFGs		
	H_2				decomposition	decomposition		
Ru/N-MC	237	-	282-505	589	652	603		
Ba-Ru/N-MC	183	203	277	523	640	none		
Ru-N-MC	155	-	230	550	608	155, 210, 559		
Ba/Ru-N-MC	190	200	220	none	672	182		

Table S3 The peak position of various catalysts measured by H₂-TPR.

Table S4 Textural properties of Ba-Ru/N-MC-used and Ba/Ru-N-MC-used catalysts.

Catalysta	S. A. ^a	P. V. ^b	P. D. ^c	S. A. decreased
Catalysis	$(m^2 \cdot g^{-1})$	$(cm^{3} \cdot g^{-1})$	(nm)	(%)
Ba-Ru/N-MC-used	678	0.98	9.2	6.4
Ba/Ru-N-MC-used	630	0.88	9.2	2.6

^a The specific surface area. ^b The total pore volume. ^c Pore diameter calculated by the desorption branches of the isotherms using the BJH method.

Table S5 The elemental composition of the carbon materials is measured by elementary analysis.

Catalysta	Elemental content (wt.%)						
Catalysis	Ν	С	Н	S			
Ru-N-MC	1.44	72.37	1.85	0.48			
Ba/Ru-N-MC	1.41	68.79	1.78	0.24			
Ba/Ru-N-MC-used	1.64	66.96	1.92	0.19			

Fig. S1 (a) N₂ adsorption-desorption isotherms and (b) pore size distribution curves of the Ru-MC

and Ba/Ru-MC samples.

Fig. S2 The signal of CO and CO₂ in Temperature-programmed reduction profiles of the (a) Ru/N-MC, (b) Ru-N-MC, (c) Ba-Ru/N-MC and (d) Ba/Ru-N-MC catalysts under 5% H₂/Ar atmosphere detected with a mass spectrometer.

Fig. S3 (a) N₂ adsorption-desorption isotherms and (b) pore size distribution curves of Ba-Ru/N-MC-used and Ba/Ru-N-MC-used catalysts.

Fig. S4 HRTEM images and particle size distributions of (a, c) Ba-Ru/N-MC-used, (b, d) Ba/Ru-N-MC-used.

[1] X. J. Yu, B. Y. Lin, B. B. Gong, J. X. Lin, R. Wang, K. M. Wei, *Catal. Lett.*, 2008, **124**, 168–173.

[2] E. Truszkiewicz, W. Raróg-Pilecka, K. Schmidt-Szałowski, S. Jodzis, E. Wilczkowska, D.

Łomot, Z. Kaszkur, Z. Karpiński, Z. Kowalczyk, J. Catal., 2009, 265, 181-190.

[3] C. H. Liang, Z. B. Wei, M. F. Luo, P. L. Ying, Q. Xin, C. Li, Stu. Surf. Sci. Catal., 2001, 138, 283-290.

[4] C. H. Liang, Z. B. Wei, Q. Xin, C. Li, Appl. Catal. A-Gen., 2001, 208, 193–201.