Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information

Lewis acidic FeCl₃ promoted 2-Aza-Cope Rearrangement to afford α -Substituted homoallylamines in dimethyl carbonate

Karthik Gadde, Jonas Daelemans, Bert U. W. Maes and Kourosch Abbaspour Tehrani*

Organic Synthesis, Department of Chemistry, University of Antwerp Groenenborgerlaan 171, B-2020 Antwerp, Belgium

E-mail: kourosch.abbaspourtehrani@uantwerpen.be

Contents

Section 1	Gener	ESI 3			
Section 2	Reacti	ESI 4			
	2.1	Screening of Lewis acids	ESI 4		
	2.2	Screening of solvents	ESI 5		
Section 3	Contro	ol experiments for reaction mechanism	ESI 6		
Section 4	Туріса	ESI 8			
	4.1	Preparation of starting materials 2a and 2b	ESI 8		
	4.2	Synthesis of α -substituted homoallylamines 4a-4z, 4aa-4ah	ESI 9		
	4.3	Gram scale experiment	ESI 10		
	4.4	Hydrolysis of the ketimine and recovery of benzophenone	ESI 10		
Section 5	Charao	Characterization data for starting materials 2a, 2b and 2c			
Section 6	Charao	Characterization data for products 4a-4z, 4aa-4ah, 5a and 6			
Section 7	Refere	References			
Section 8	NMR s	ESI 30-35			
Section 9	NMR s	ESI 36-92			

1 General information

Nuclear magnetic resonance (NMR) spectra were recorded at 400 (101) MHz on a Bruker Avance III HD spectrometer. Used CDCl₃ as solvent and TMS (= 0) as internal standard. Chemical shifts (δ) are given in parts per million (ppm) and coupling constants (*J*-values) are expressed in hertz (Hz). Multiplicities are abbreviated as: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad; etc.

For high resolution mass-spectrometric (HRMS) analysis, samples were dissolved in acetonitrile and diluted to a concentration of approximately 10^{-5} M (50/50 CH₃CN/H₂O). 10 µL of each sample was injected using a CapLC system (Waters, Manchester, UK) and electrosprayed using a standard electrospray source. Samples were injected with an interval of 3 minutes. Positive ion mode accurate mass spectra were acquired using a Q-TOFF II instrument (Waters, Manchester, UK). The MS was calibrated prior to use with a 0.1% H₃PO₄ solution. The spectra were lock mass corrected using the known mass of the nearest H₃PO₄ cluster or a known background ion.

IR spectra of the pure compounds were recorded on a Bruker Alpha spectrometer, equipped with a platinum-ATR crystal. Melting points were determined by a BÜCHI B-545 capillary melting point apparatus and are uncorrected. Flash chromatography was performed on an automated chromatography system (Biotage[®]) with on-line UV detection using Alumina (Basic) Flash Cartridges (25 g, Interchim) and the indicated solvent system. Unless otherwise stated, all solvents and reagents were purchased from commercial suppliers and used as received without additional purification. Commercially available molecular sieves (4Å) were dried in vacuum oven at 200 °C for 12 h before use.

2 Reaction optimization studies

2.1 Screening of Lewis acids

General procedure for Lewis acids screening reactions: In an oven-dried 10 mL vial were added 1,1diphenylbut-3-en-1-amine (**2a**) (56 mg, 0.25 mmol, 1.0 equiv), benzaldehyde (**1a**) (27 mg, 0.25 mmol, 1.0 equiv), catalyst (0.025 mmol, 10 mol%), 4Å molecular sieves (100 mg) and solvent (0.5 mL). The vial was sealed under an ambient atmosphere. Then, the reaction mixture was placed in a preheated oil-bath at 50 °C (or at 90 °C) and stirred for 18 hours in the same temperature. Afterwards cooling to room temperature, the reaction mixture was diluted with 10 mL dichloromethane (or 10 mL EtOAc) and filtered through sintered glass funnel (molecular sieves can be separated here). Then, the filtrate was poured in 0.5N NaOH solution (10 mL) and extracted with dichloromethane (or EtOAc) (10, 10, 5 mL). The combined organic layer was dried over MgSO₄, filtered and concentrated under reduced pressure. 1,3,5-Trimethoxybenzene (14.02 mg, 0.33 equiv.) was added, as internal standard, and everything was dissolved in CDCl₃. Subsequently, a ¹H NMR was recorded and signals were integrated versus the internal standard.

Table S-1. Lewis acid catalyst screening

Entry	Lewis acid (10 mol%)	Dichloromethane at 50 °C ^[a] NMR yield ^[c]		Dimethyl carbonate at 90 °C ^[b] NMR yield ^[c]		
		3a (%) 4a (%)		3a (%)	4a (%)	
1	Zn(OTf) ₂	44	51	1	94	
2	ZnCl ₂	15	50	0	85	
3	Cu(OTf) ₂	54	31	11	70	
4	CuCl ₂	79	0	37	15	
5	Ag(OTf)	52	0	58	28	
6	AuPPh₃Cl	8	0	73	9	
7	Ni(OTf) ₂	91	0	70	14	
8	Sc(OTf) ₃	11	83	0	76	
9	Yb(OTf) ₃	16	80	1	90	
10	In(OTf) ₃	11	85	1	84	
11	InCl ₃	3	88	0	94	
12	BiCl ₃	5	81	0	91	
13	Al(OTf) ₃	15	77	1	94	
14 ^[d]	BF ₃ ·OEt ₂	2	38	0	81	
15	Fe(OTf) ₃	17	78	0	91	
16	FeCl ₃ ·6H ₂ O	22	76	5	92	
17	FeCl ₂	38	44	2	81	
18	FeCl ₃	13	85	0	99	

[a] Reaction conditions: **1a** (0.25 mmol), **2a** (0.25 mmol), catalyst (0.025 mmol), 4 Å molecular sieves (100 mg), dichloromethane (0.5 mL), 50 °C, 18 h.

[b] Reaction conditions: **1a** (0.25 mmol), **2a** (0.25 mmol), catalyst (0.025 mmol), 4 Å molecular sieves (100 mg), dimethyl carbonate (0.5 mL), 90 °C, 18 h.

[c] Yields were determined by ¹H NMR analysis with 1,3,5-trimethoxybenzene as internal standard.

[d] 100 mol% of BF_3 ·OEt₂ was used.

2.2 Screening of solvents

Table S-2. Solvent screening^[a]

Entry	Solvent	Time	т	NMR yi	eld ^{[b}	Solvent Guide ¹
		[h]	[°C]	3a	4a	
1 ^[c]	Water	18	50	65	0	Recommended
2	DMSO	18	50	58	0	Problematic
3	DMF	18	50	47	0	Hazardous
4	Acetonitrile	18	50	83	6	Problematic
		18	82	0	94	
5	Methanol	18	50	47	11	Recommended
		18	65	84	14	
6	1,4-dioxane	18	50	28	5	Hazardous
		18	101	0	94	
7	EtOAc	18	50	45	52	Recommended
		18	80	0	89	
8	2-Me-THF	18	50	4	87	Problematic
		18	80	0	94	
9	n-BuOAc	18	50	10	84	Recommended
		18	126	0	94	
10	Dichloroethane	18	50	4	82	Highly Hazardous
		18	85	0	98	
11	Dichloromethane	18	50	13	85	Highly Hazardous
12	Toluene	18	50	5	58	Problematic
		18	110	0	91	
13 ^[c]	Neat	18	50	48	0	Recommended
14	Dimethyl carbonate	18	25	9	71	Recommended
			50	3	90	
		18	90	0	99	
		6	90	0	99	
		3	90	26	71	

[a] Reaction conditions: **1a** (0.25 mmol), **2a** (0.25 mmol), FeCl₃ (10 mol%), 4 Å molecular sieves (100 mg) and solvent (0.5 mL) at 50 °C (or at reflux) for 18 h. [b] Yields were determined by ¹H NMR analysis with 1,3,5-trimethoxybenzene as internal standard.

[c] without molecular sieves.

General procedure for solvent screening reactions: In an oven-dried 10 mL vial were added 1,1diphenylbut-3-en-1-amine (**2a**) (56 mg, 0.25 mmol, 1.0 equiv), benzaldehyde (**1a**) (27 mg, 0.25 mmol, 1.0 equiv), FeCl₃ (4.05 mg, 0.025 mmol, 10mol%), 4Å molecular sieves (100 mg) and solvent (0.5 mL). The vial was sealed under an ambient atmosphere. Then, the reaction mixture was placed in a preheated oilbath at 50 °C (or at solvent boiling point temperature) and stirred for 18 h in the same temperature. Afterwards cooling to room temperature, the reaction mixture was diluted with 10 mL dichloromethane (or 10 mL EtOAc) and filtered through sintered glass funnel (molecular sieves can be separated here). Then, the filtrate was poured in 0.5N NaOH solution (10 mL) and extracted with dichloromethane (or EtOAc) (10, 10, 5 mL). The combined organic layer was dried over MgSO₄, filtered and concentrated under reduced pressure. 1,3,5-Trimethoxybenzene (14.02 mg, 0.33 equiv.) was added, as internal standard, and everything was dissolved in CDCl₃. Subsequently, a ¹H NMR was recorded and signals were integrated versus the internal standard.

3 Control experiments for reaction mechanism [a]

[a] Yields were determined by ¹H NMR analysis with 1,3,5-trimethoxybenzene as internal standard.

(vi) Synthesis of δ -substituted homoallylamine from β -substituted homoallylamine

The developed method was applied for the scope of β - and δ -substituted homoallylamines with aldehydes. In case of β - substituted homoallylamine **2b**, the expected product **4ae** was obtained in 98% yield under the standard optimized condition. On the other hand, the reaction with δ - substituted homoallylamines **5ae** and **2c** was unsuccessful under the standard optimized condition. In literature, 2aza-Cope rearrangements for the synthesis of β -substituted homoallylamines from δ -substituted homoallylamines are very rarely known. In experiment-1, the expected product **8** was not observed. Instead, the unexpected product **9** was observed. Possibaly, product **9** was formed by the reaction between the starting material **5ae** and an *in situ* formed benzaldehyde (Benzaldehyde, which was formed by the hydrolysis of expected product **8**). In experiment-2, the expected product **10** was not observed. Instead, aldmine intermediate **11** and benzophenone **6** were formed. Possibaly, benzophenone **6** was formed by the hydrolysis of the expected product **10**.

4 Typical experimental procedure

4.1 Preparation of starting materials (1,1-diphenylhomoallylamines 2a and 2b)

1,1-diphenylhomoallylamines are easily prepared from benzophenone imine and allylmagnesium chlorides. Benzophenone imine is commercially available and can be easily synthesized by reaction of benzophenone with ammonia.¹¹

General procedure A (Preparation of 1,1-diphenylbut-3-en-1-amine **2a**): Following modified reported procedure,²⁻³ benzophenone imine (6 mL, 35.76 mmol, 1.0 equiv) was added to an oven-dried 2-neck roundbottom flask equipped with a pressure equalizing addition funnel and reflux condenser which had been evacuated and refilled with argon 3 times. 40 mL of dry 2-MeTHF was then added and the flask cooled to 0 °C. Allylmagnesium chloride (46 mL at 1.7 M in THF, 79 mmol, 2.2 equiv) was added into the additional funnel and then added dropwise to the stirring benzophenone imine solution over the course of 60 minutes. Subsequently, the reaction mixture was stirred up to room temperature and stirred for 18 hours, then it was cooled to 0 °C and queanched by the dropwise addition of ice cold solution of 1N NaOH, passed through a small plug of celite and concentrated in vacuo to remove solvent. Then, the resulting residue was dissolved in 30% aq. AcOH at room temperature. The mixture was stirred at room temperature for 1 hour, MTBE (15 mL) added, then partitioned in between MTBE and aqueous layer (2 times). The aqueous layer was then neutralized with 2N NaOH and extracted with ethyl acetate. The ethyl acetate fractions were combined, dried using MgSO₄ and concentrated under vacuum affording the pure desired 1,1-diphenylbut-3-en-1-amine **2a** (6.4 g, 80%).

General procedure B (Preparation of 2-methyl-1,1-diphenylbut-3-en-1-amine **2b**): Following modified reported procedure,²⁻³ benzophenone imine (1.5 mL, 8.94 mmol, 1.0 equiv) was added to an oven-dried 2-neck roundbottom flask equipped with a pressure equalizing addition funnel and reflux condenser which had been evacuated and refilled with argon 3 times. 15 mL of dry 2-MeTHF was then added and the flask cooled to 0 °C. 2-Butenylmagnesium chloride (39.5 mL at 0.5 M in THF, 19.67 mmol, 2.2 equiv) was added into the additional funnel and then added dropwise to the stirring benzophenone imine solution over the course of 60 minutes. Subsequently, the reaction mixture was stirred up to room temperature and stirred for 18 hours, then it was cooled to 0 °C and quenched by the dropwise addition of ice cold solution of 1N NaOH, passed through a small plug of celite and concentrated in vacuo to remove solvent. Then, the resulting residue was dissolved in 30% aq. AcOH at room temperature. The

mixture was stirred at room temperature for 1 hour, MTBE (10 mL) added, then partitioned in between MTBE and aqueous layer (2 times). The aqueous layer was then neutralized with 2N NaOH and extracted with ethyl acetate. The ethyl acetate fractions were combined, dried using MgSO₄ and concentrated under vacuum affording the pure desired 2-methyl-1,1-diphenylbut-3-en-1-amine **2b** (1.5 g, 71%).

4.2 Synthesis of α -substituted homoallylamines 4a-4z, 4aa-4ah

General procedure C (4a-4l, 4y-4z and 4aa-4ah): In an oven-dried 10 mL vial were added 1,1diphenylbut-3-en-1-amine (**2a**) (or 2-methyl-1,1-diphenylbut-3-en-1-amine **2b**) (0.25 mmol, 1.0 equiv), aldehyde (0.25 mmol, 1.0 equiv), FeCl₃ (4.05 mg, 10 mol%), 4Å molecular sieves (100 mg) and dimethyl carbonate (0.5 mL). The vial was sealed under an ambient atmosphere. Then, the reaction mixture was placed in a preheated oil-bath at 90 °C and stirred for 6 to 18 h at this temperature. Afterwards the mixture was cooled to room temperature, then diluted with 10 mL ethyl acetate and filtered through sintered glass funnel (to remove molecular sieves). Subsequently, the filtrate was poured in 0.5N NaOH solution (10 mL) and extracted with ethyl acetate (10, 10, 5 mL). The combined organic layer was dried using MgSO₄, filtered and concentrated under reduced pressure.

General procedure D (4m-4q): In an oven-dried 10 mL vial were added 1,1-diphenylbut-3-en-1-amine (2a) (or 2-methyl-1,1-diphenylbut-3-en-1-amine 2b) (0.25 mmol, 1.0 equiv), aldehyde (0.25 mmol, 1.0 equiv), FeCl₃ (10.14 mg, 25 mol%), 4Å molecular sieves (100 mg) and dimethyl carbonate (0.5 mL). The vial was sealed under an ambient atmosphere. Then, the reaction mixture was placed in a preheated oilbath at 90 °C and stirred for 24 h at this temperature. Afterwards the mixture was cooled to room temperature, then diluted with 10 mL ethyl acetate and filtered through sintered glass funnel (to remove molecular sieves). Subsequently, the filtrate was poured in 0.5N NaOH solution (10 mL) and extracted with ethyl acetate (10, 10, 5 mL). The combined organic layer was dried using MgSO₄, filtered and concentrated under reduced pressure.

General procedure E (4r-4x): In an oven-dried 10 mL vial were added 1,1-diphenylbut-3-en-1-amine (**2a**) (or 2-methyl-1,1-diphenylbut-3-en-1-amine **2b**) (0.25 mmol, 1.0 equiv), aldehyde (0.25 mmol, 1.0 equiv), FeCl₃ (4.05 mg, 10 mol%), 4Å molecular sieves (100 mg) and dimethyl carbonate (0.5 mL). The vial was sealed under an ambient atmosphere. Then, the reaction mixture was placed in a preheated oilbath at 50 °C and stirred for 2 to 6 h at this temperature. Afterwards the mixture was cooled to room temperature, then diluted with 10 mL ethyl acetate and filtered through sintered glass funnel (to remove molecular sieves). Subsequently, the filtrate was poured in 0.5N NaOH solution (10 mL) and extracted with ethyl acetate (10, 10, 5 mL). The combined organic layer was dried using MgSO₄, filtered and concentrated under reduced pressure.

Note-1: The most of the products are not required column chromatography purification. The products **4a**, **4c**, **4d**, **4e**, **4f**, **4g**, **4n**, **4o**, **4p**, **4q**, **4w**, **4aa** and **4ab** were purified by flash chromatography (1-20% EtOAc/Heptane gradient with 1% Et₃N).

Note-2: We can use an alternative method base on fitration over neutral alumina avoiding aqueous work-up: the reaction mixture was filtered through a bed of neutral alumina and the neutral alumina subsequently washed with EtOAc, then filtrate was concentrated in vacuo.

4.3 Gram scale experiment

General procedure F (4a): In an oven-dried 50 mL vial were added 1,1-diphenylbut-3-en-1-amine (**2a**) (1.117 g, 5 mmol, 1.0 equiv), benzaldehyde (0.531 g, 5 mmol, 1.0 equiv), FeCl₃ (81 mg, 10mol%), 4Å molecular sieves (2 g) and dimethyl carbonate (20 mL). The reaction mixture vial was sealed under an ambient atmosphere. Then, the reaction mixture was placed in a preheated oil-bath at 90 °C and stirred for 9 h at this temperature. Afterwards, the mixture was cooled to room temperature, then filtered through a bed of neutral alumina and the neutral alumina subsequently washed with dimethyl carbonate (3 x 30 mL). The filtrate was concentrated under reduced pressure to afford the pure 1,1-diphenyl-N-(1-phenylbut-3-en-1-yl)methanimine **2a** (1.464 g, 94%) and recovered dimethyl carbonate.

4.4 Hydrolysis of the ketimine and recovery of benzophenone

General procedure G (5a and 6): This general procedure was adapted from a literature procedure.⁴ 1,1diphenyl-N-(1-phenylbut-3-en-1-yl)methanimine (1.464 g, 4.7 mmol) was dissolved in 2-MeTHF (20 mL), followed by the addition of 2N aqueous HCl solution (10.0 mL). The mixture was stirred at room temperature for 5 h and monitored by TLC. Upon completion, 2-MeTHF was removed by rotary evaporation and another 10 mL of H₂O was added. The mixture was washed with EtOAc (4 x 5 mL) and the combined organic phase was extracted with H₂O (5 mL) which was then washed with EtOAc (1.0 mL). The EtOAc fractions were combined, dried using MgSO₄ and concentrated under vacuum affording the pure benzophenone **6** (0.782 g, 91 %). The combined aqueous phase was neutralized with 3N NaOH and extracted with ethyl acetate, the organic fractions were combined, dried using MgSO₄ and concentrated under vacuum affording the pure 1-phenylbut-3-en-1-amine **5a** (0.626g, 90 %).

5 Characterization data for starting materials 2a-2c

1,1-diphenylbut-3-en-1-amine (2a):⁵ The general procedure-A was applied using benzophenone imine and allylmagnesium chloride solution. After acid-base extraction, 1,1-diphenylbut-3-en-1-amine was obtained in 80% (6.4 g) yield. Pale yellow oil; ¹H-NMR

(400 MHz, CDCl₃): δ 7.39-7.37 (m, 4H), 7.28 (t, *J* = 7.6 Hz, 4H), 7.1f9 (t, *J* = 7.3 Hz, 2H), 5.53 (ddt, *J* =17.2, 10.1, 7.1 Hz, 1H), 5.17-5.06 (m, 2H), 3.01 (d, *J* = 7.1 Hz, 2H), 1.81 (br s, 2H) ppm; ¹³C-NMR (101 MHz, CDCl₃): δ 148.2 (C), 134.2 (CH), 128.1 (CH), 126.6 (CH), 126.4 (CH), 119.1 (CH₂), 60.3 (C), 47.6 (CH₂) ppm. **IR** (ATR) (cm⁻¹): 3058, 3023, 1637, 1597, 1491, 1444, 1240, 1192, 1060, 1031, 999, 915, 858, 752, 720, 695, 610, 571. The spectroscopic data for **2a** is in agreement with literature.⁵

2-methyl-1,1-diphenylbut-3-en-1-amine (**2b**):² The general procedure-B was applied using benzophenone imine and 2-butenylmagnesium chloride solution. After acid-base extraction, 2-methyl-1,1-diphenylbut-3-en-1-amine was obtained in 71% (1.5 g) yield.

Pale yellow oil; ¹H-NMR (400 MHz, CDCl₃): δ 7.51-7.49 (m, 4H), 7.30-7.24 (m, 4H), 7.18-7.12 (m, 2H), 5.73 (ddd, *J* = 17.1, 10.6, 6.2 Hz, 1H), 5.07 (dd, *J* = 6.2, 4.4 Hz, 2H), 3.51 (p, *J* = 6.6 Hz, 1H), 1.68 (br s, 2H), 1.00 (d, *J* = 6.8 Hz, 3H) ppm; ¹³C-NMR (101 MHz, CDCl₃): δ 147.6 (C), 146.9 (C), 139.9 (CH), 128.0 (CH), 127.9 (CH), 126.7 (CH), 126.6 (CH), 126.1 (CH), 126.0 (CH), 116.3 (CH₂), 63.1 (C), 44.4 (CH), 14.2 (CH₃) ppm. **IR** (ATR) (cm⁻¹): 3057, 3020, 1633, 1596, 1491, 1445, 1414, 1372, 1317, 1196, 1076, 1031, 1004, 965, 913, 873, 823, 764, 747, 697, 671, 628, 571, 506. The spectroscopic data for **2b** is in agreement with literature.²

(*E*)-4-(4-methoxyphenyl)-1,1-diphenylbut-3-en-1-amine (2c):¹⁰ The letirature procedure¹⁰ was applied using 1,1-diphenylbut-3-en-1-amine, 1-iodo-4-methoxybenzene and $Pd(OAc)_2$ in DMF. After column chromatography

purification, (*E*)-4-(4-methoxyphenyl)-1,1-diphenylbut-3-en-1-amine was obtained in 51% yield (168 mg; 1 mmol scale). Pale yellow oil; ¹**H-NMR** (400 MHz, CDCl₃): δ 7.42-7.40 (m, 4H), 7.30 (t, J = 7.7 Hz, 4H), 7.23-7.19 (m, 2H), 7.16 (d, J = 8.7 Hz, 2H), 6.78 (d, J = 8.7 Hz, 2H), 6.44 (d, J = 15.8 Hz, 1H), 5.76 (dt, *J* = 15.7, 7.2 Hz, 1H), 3.77j (s, 3H), 3.13 (dd, *J* = 7.3 Hz, 2H), 1.83 (br s, 2H) ppm; ¹³C-NMR (101 MHz, CDCl₃): δ 159.0 (C), 148.3 (C), 133.6 (CH), 130.2 (C), 128.1 (CH), 127.3 (CH), 126.7 (CH), 126.4 (CH), 123.4 (CH), 113.9 (CH), 60.8 (C), 55.3 (CH₃), 46.9 (CH₂) ppm. **IR** (ATR) (cm⁻¹): 3056, 3027, 2956, 2932, 2835, 1606, 1577, 1509, 1492, 1463, 1444, 1295, 1248, 1174, 1109, 1032, 968, 910, 837, 801, 755, 699, 640, 597, 525. The spectroscopic data for **2c** is in agreement with literature.¹⁰

6 Characterization data for products 4a-4z,4aa-4ah, 5a and 6

1,1-diphenyl-*N***-(1-phenylbut-3-en-1-yl)methanimine (4a):**⁶⁻⁷ The general procedure-C was applied using benzaldehyde (1a) (27 mg, 0.25 mmol, 1.0 equiv), 1,1-diphenylbut-3-en-1-amine (2a) (56 mg, 0.25 mmol, 1.0 equiv), FeCl₃ (4.05 mg, 0.025 mmol, 10 mol%) and 4 Å molecular sieves (100 mg) in dimethyl carbonate over 6 hours reaction

time at 90 °C. After aqueous work-up and flash chromatography afforded 1,1-diphenyl-*N*-(1-phenylbut-3-en-1-yl)methanimine in 95% (74 mg) yield. White solid; *mp*: 86-88 °C; ¹H-NMR (400 MHz, CDCl₃): δ 7.68-7.65 (m, 2H), 7.42-7.40 (m, 3H), 7.36-7.19 (m, 8H), 7.07-7.04 (m, 2H), 5.65 (ddt, *J* =17.2, 10.2, 7.1 Hz, 1H), 4.95 (ddd, *J* = 10.1, 9.2, 1.5 Hz, 2H), 4.43 (dd, *J* = 7.9, 5.5 Hz, 1H), 2.68 (dt, *J* = 14.0, 7.6 Hz, 1H, diastereotopic allyl-CH₂), 2.57 (ddd, *J* = 13.7, 6.7, 5.6 Hz, 1H, diastereotopic allyl-CH₂) ppm; ¹³C-NMR (101 MHz, CDCl₃): δ 166.7 (C=N), 144.5 (C), 140.1 (C), 137.2 (C), 135.8 (CH), 130.7 (CH), 129.8 (CH), 128.6 (CH), 128.29 (CH), 128.27 (CH), 128.0 (CH), 127.9 (CH), 127.2 (CH), 126.7 (CH), 116.7 (CH₂), 66.5 (CH), 43.9 (CH₂) ppm; **IR** (ATR) (cm⁻¹): 3059, 3026, 1623, 1599, 1577, 1491, 1445, 1314, 1281, 1074, 1028, 993, 912, 770, 725, 696, 578; **HRMS** (ESI) *m/z* calculated for C₂₃H₂₂N [M+H]⁺: 312.1747; found 312.1754. The spectroscopic data for **4a** is in agreement with literature.⁶

1,1-diphenyl-*N***-(1-(p-tolyl)but-3-en-1-yl)methanimin (4b)**:⁷ The general procedure-C was applied using *p*-tolualdehyde (1b) (30 mg, 0.25 mmol, 1.0 equiv), 1,1diphenylbut-3-en-1-amine (2a) (56 mg, 0.25 mmol, 1.0 equiv), FeCl₃ (4.05 mg, 0.025

4b mmol, 10 mol%) and 4 Å molecular sieves (100 mg) in dimethyl carbonate over 6 hours reaction time at 90 °C. After aqueous work-up, 1,1-diphenyl-*N*-(1-(p-tolyl)but-3-en-1-yl)methanimin was obtained in 98% (80 mg) yield. Colourless oil; ¹**H-NMR** (400 MHz, CDCl₃): δ 7.65 (dd, *J* = 8.1, 1.5 Hz, 2H), 7.41-7.38 (m, 3H), 7.34-7.28 (m, 3H), 7.22-7.19 (m, 2H), 7.10-7.04 (m, 4H), 5.64 (ddt, *J* = 17.2, 10.1, 7.1 Hz, 1H), 4.99-4.92 (m, 2H), 4.40 (dd, *J* = 7.8, 5.5 Hz, 1H), 2.67 (dt, *J* = 15.1, 7.6 Hz, 1H, diastereotopic allyl-CH₂), 2.59-2.53 (m, 1H, diastereotopic allyl-CH₂), 2.31 (s, 3H) ppm; ¹³C-NMR (101 MHz, CDCl₃): δ 166.4 (C=N), 141.5 (C), 140.1(C), 137.2(C), 136.2(C), 135.9 (CH), 130.1 (CH), 129.8 (CH), 129.0 (CH), 128.6 (CH), 128.3 (CH), 128.2 (CH), 127.9 (CH), 127.0 (CH), 116.5 (CH₂), 66.2 (CH), 43.9 (CH₂), 21.1 (CH₃) ppm; **IR** (ATR) (cm⁻¹): 2921, 1621, 1597, 1576, 1511, 1489, 1444, 1313, 1278, 1177, 1106, 1073, 1020, 992, 940, 909, 814, 777, 724, 693, 657, 644, 624, 603, 541; **HRMS** (ESI) *m/z* calculated for C₂₄H₂₄N [M+H]⁺: 326.1903; found 326.1913.

N-(1-(4-methoxyphenyl)but-3-en-1-yl)-1,1-diphenylmethanimine (4c):⁶ The general procedure-C was applied using *p*-anisaldehyde (1c) (34 mg, 0.25 mmol, 1.0 equiv), 1,1-diphenylbut-3-en-1-amine (2a) (56 mg, 0.25 mmol, 1.0 equiv), FeCl₃ (4.05 mg, 0.025 mmol, 10 mol%) and 4 Å molecular sieves (100 mg) in

dimethyl carbonate over 18 hours reaction time at 90 °C. After aqueous work-up and flash chromatography, *N*-(1-(4-methoxyphenyl)but-3-en-1-yl)-1,1-diphenylmethanimine was obtained in 93% (79 mg) yield. Brown oil; ¹**H-NMR** (400 MHz, CDCl₃): δ 7.65 (d, *J* = 7.9 Hz, 2H), 7.42-7.21 (m, 8H), 7.07-7.05 (m, 2H), 6.83 (d, *J* = 8.0 Hz, 2H), 5.64 (ddt, *J* = 17.2, 10.1, 7.1 Hz, 1H), 4.99-4.92 (m, 2H), 4.38 (dd, *J* = 7.7, 5.7 Hz, 1H), 3.78 (s, 3H), 2.65 (dt, *J* = 14.9, 7.5 Hz, 1H, diastereotopic allyl-CH₂), 2.58-2.51 (m, 1H, diastereotopic allyl-CH₂) ppm; ¹³C-NMR (101 MHz, CDCl₃): 166.3 (C=N), 158.4 (C), 140.1 (C), 137.2 (C), 136.7 (C), 135.9 (CH), 129.8 (CH), 128.6 (CH), 128.3 (CH), 128.2 (CH), 128.1 (CH), 127.95 (CH), 127.92 (CH), 116.6 (CH₂), 113.7 (CH), 65.9 (CH), 55.2 (CH₃), 43.9 (CH₂); **IR** (ATR) (cm⁻¹): 1610, 1577, 1508, 1489, 1462, 1443, 1313, 1285, 1242, 1172, 1073, 1033, 993, 909, 828, 810, 778, 693, 657, 641, 622, 603, 547; **HRMS** (ESI) *m/z* calculated for C₂₄H₂₄NO [M+H]⁺: 342.1852; found 342.1850. The spectroscopic data for **4c** is in agreement with literature.⁶

N-(1-(2-methoxyphenyl)but-3-en-1-yl)-1,1-diphenylmethanimine (4d): The general procedure-C was applied using *o*-anisaldehyde (1d) (34 mg, 0.25 mmol, 1.0 equiv), 1,1-diphenylbut-3-en-1-amine (2a) (56 mg, 0.25 mmol, 1.0 equiv), FeCl₃ (4.05 mg, 0.025 mmol, 10 mol%) and 4 Å molecular sieves (100 mg) in dimethyl carbonate over 18 hours reaction time at 90 °C. After aqueous work-up and flash chromatography, *N*-

(1-(2-methoxyphenyl)but-3-en-1-yl)-1,1-diphenylmethanimine was obtained in 88% (75 mg) yield. Brown oil; ¹**H-NMR** (400 MHz, CDCl₃): δ 7.68-7.66 (m, 3H), 7.37-7.29 (m, 6H), 7.19-7.15 (m, 1H), 7.01-6.99 (m, 2H), 6.94 (t, J = 7.3 Hz, 1H), 6.78 (d, J = 8.1 Hz, 1H), 5.71 (ddt, J = 17.2, 10.2, 7.1 Hz, 1H), 4.99-4.90 (m, 3H), 3.61 (s, 3H), 2.66-2.54 (m, 2H, overlapping diastereotopic allyl-CH₂) ppm; ¹³**C-NMR** (101 MHz, CDCl₃): δ 166.8 (C=N), 155.9 (C), 140.4 (C), 137.4 (C), 136.4 (CH), 133.4 (C), 129.7 (CH), 128.6 (CH), 128.3 (CH), 128.02 (CH), 128.00 (CH), 127.9 (CH), 127.2 (CH), 120.7 (CH), 116.1 (CH₂), 110.4 (CH), 58.9 (CH₃), 55.2 (CH), 42.6 (CH₂) ppm; **IR** (ATR) (cm⁻¹): 3059, 2933, 1621, 1597, 1584, 1488, 1461, 1438, 1351, 1313, 1285, 1238, 1178, 1159, 1098, 1073, 1048, 1028, 992, 908, 844, 779, 752, 724, 693, 639, 622, 589, 566, 511; **HRMS** (ESI) *m/z* calculated for C₂₄H₂₄NO [M+H]⁺: 342.1852; found 342.1853.

N-(1-(3,5-dimethoxyphenyl)but-3-en-1-yl)-1,1-diphenylmethanimine (4e):⁷ The general procedure-C was applied using 3,5-dimethoxybenzaldehyde (1e) (42 mg, 0.25 mmol, 1.0 equiv), 1,1-diphenylbut-3-en-1-amine (2a) (56 mg, 0.25 mmol, 1.0 equiv), FeCl₃ (4.05 mg, 0.025 mmol, 10 mol%) and 4 Å molecular sieves (100 mg) in dimethyl carbonate over 12 hours reaction time at 90 °C. After aqueous

work-up, *N*-(1-(3,5-dimethoxyphenyl)but-3-en-1-yl)-1,1-diphenylmethanimine was obtained in 98% (91 mg) yield. Colourless oil; ¹**H-NMR** (400 MHz, CDCl₃): δ 7.67-7.65 (m, 2H), 7.43-7.38 (m, 3H), 7.36-7.29 (m, 3H), 7.08-7.06 (m, 2H), 6.50 (d, *J* = 2.3 Hz, 2H), 6.33 (t, *J* = 2.3 Hz, 1H), 5.65 (ddt, *J* =17.2, 10.1, 7.1 Hz, 1H), 4.96 (ddd, *J* = 11.2, 10.0, 1.5 Hz, 2H), 4.35 (dd, *J* = 7.9, 5.4 Hz, 1H), 3.77 (s, 6H), 2.66 (dt, *J* = 15.1, 7.6 Hz, 1H, diastereotopic allyl-CH₂), 2.56 (ddd, *J* = 13.6, 6.7, 5.6 Hz, 1H, diastereotopic allyl-CH₂) ppm; ¹³**C**-**NMR** (101 MHz, CDCl₃): δ 166.9 (C=N), 160.7 (C), 147.0 (C), 140.0 (C), 137.1 (C), 135.7 (CH), 129.9 (CH), 128.6 (CH), 128.3 (CH), 127.98 (CH), 127.96 (CH), 116.7 (CH₂), 105.2 (CH), 98.7 (CH), 66.6 (CH), 55.3 (CH₃), 43.9 (CH₂) ppm; **IR** (ATR) (cm⁻¹): 2934, 1660, 1593, 1459, 1445, 1427, 1347, 1312, 1286, 1202, 1149, 1059, 1028, 993, 939, 917, 834, 773, 735, 693, 637, 588, 538; **HRMS** (ESI) *m/z* calculated for C₂₅H₂₆NO₂ [M+H]⁺: 372.1958; found 372.1951. The spectroscopic data for **4e** is in agreement with literature.⁷

N-(1-(4-fluorophenyl)but-3-en-1-yl)-1,1-diphenylmethanimine (4f):⁷ The general procedure-C was applied using 4-fluorobenzaldehyde (1f) (31 mg, 0.25 mmol, 1.0 equiv), 1,1-diphenylbut-3-en-1-amine (2a) (56 mg, 0.25 mmol, 1.0 equiv), FeCl₃ (4.05 mg, 0.025 mmol, 10 mol%) and 4 Å molecular sieves (100 mg) in dimethyl carbonate over 6 hours reaction time at 90 °C. After aqueous work-up and flash

chromatography, *N*-(1-(4-fluorophenyl)but-3-en-1-yl)-1,1-diphenylmethanimine was obtained in 94% (77 mg) yield. White solid; *mp*: 54-56 °C; ¹H-NMR (400 MHz, CDCl₃): δ 7.66-7.64 (m, 2H), 7.42-7.41 (m, 3H), 7.38-7.24 (m, 5H), 7.05-7.03 (m, 2H), 6.9z6 (t, *J* = 7.8 Hz, 1H), 5.62 (ddt, *J* =17.3, 10.2, 7.1 Hz, 1H), 4.98-4.93 (m, 2H), 4.40 (dd, *J* = 7.5, 5.8 Hz, 1H), 2.64 (dt, *J* = 14.8, 7.5 Hz, 1H, diastereotopic allyl-CH₂), 2.57-2.50 (m, 1H, diastereotopic allyl-CH₂) ppm; ¹³C-NMR (101 MHz, CDCl₃): δ 166.8 (C=N), 161.7 (d, *J* = 243 Hz, C-F), 140.2 (d, *J* = 3.1 Hz, C), 139.9 (C), 137.0 (C), 135.5 (CH), 130.0 (CH), 128.6 (CH), 158.58 (CH), 128.5 (CH), 128.4 (CH), 128.0 (CH), 127.8 (CH), 116.9 (CH₂), 115.0 (d, *J* = 21 Hz, CH), 65.7 (CH), 44.0 (CH₂) ppm; **IR** (ATR) (cm⁻¹): 2958, 2908, 1614, 1602, 1573, 1505, 1442, 1415, 1314, 1287, 1259, 1238, 1216, 1177, 1153, 1092, 1073, 1025, 1014, 999, 958, 917, 849, 834, 794, 782, 769, 726, 695, 681, 659, 639, 623, 604, 546; **HRMS** (ESI) *m/z* calculated for C₂₃H₂₁NF [M+H]⁺: 330.1653; found 330.1653. The spectroscopic data for **4f** is in agreement with literature.⁷

N-(1-(4-chlorophenyl)but-3-en-1-yl)-1,1-diphenylmethanimine (4g): The general procedure-C was applied using 4-chlorobenzaldehyde (1g) (35 mg, 0.25 mmol, 1.0 equiv), 1,1-diphenylbut-3-en-1-amine (2a) (56 mg, 0.25 mmol, 1.0 equiv), FeCl₃ (4.05 mg, 0.025 mmol, 10 mol%) and 4 Å molecular sieves (100 mg) in dimethyl carbonate over 6 hours reaction time at 90 °C. After aqueous work-up

and flash chromatography, *N*-(1-(4-chlorophenyl)but-3-en-1-yl)-1,1-diphenylmethanimine was obtained in 90% (78 mg) yield. White solid; *mp*: 59-61 °C; ¹H-NMR (400 MHz, CDCl₃): δ 7.66-7.64 (m, 2H), 7.42-7.40 (m, 3H), 7.37-7.29 (m, 3H), 7.27-7.22 (m, 4H), 7.04-7.02 (m, 2H), 5.62 (ddt, *J* =17.4, 10.3, 7.1 Hz, 1H), 4.98-4.93 (m, 2H), 4.39 (dd, *J* = 7.6, 5.7 Hz, 1H), 2.63 (dt, *J* = 14.8, 7.5 Hz, 1H, diastereotopic allyl-CH₂), 2.57-2.50 (m, 1H, diastereotopic allyl-CH₂) ppm; ¹³C-NMR (101 MHz, CDCl₃): δ 167.1 (C=N), 143.0 (C), 140.0 (C), 137.0 (C), 135.3 (CH), 132.3 (C), 130.0 (CH), 129.4 (CH), 128.6 (CH), 128.5 (CH), 128.4 (CH), 128.38 (CH), 128.0 (CH), 127.8 (CH), 117.0 (CH₂), 65.8 (CH), 43.9 (CH₂) ppm; **IR** (ATR) (cm⁻¹): 1621, 1596, 1575, 1488, 1444, 1407, 1313, 1284, 1088, 1073, 1028, 1013, 992, 911, 825, 778, 770, 730, 692, 654, 636, 618, 591, 538; **HRMS** (ESI) *m/z* calculated for C₂₃H₂₁NCl [M+H]⁺: 346.1357; found 346.1362.

N-(1-(4-bromophenyl)but-3-en-1-yl)-1,1-diphenylmethanimine (4h): The general procedure-C was applied using 4-bromobenzaldehyde (1g) (46 mg, 0.25 mmol, 1.0 equiv), 1,1-diphenylbut-3-en-1-amine (2a) (56 mg, 0.25 mmol, 1.0 equiv), FeCl₃ (4.05 mg, 0.025 mmol, 10 mol%) and 4 Å molecular sieves (100 mg) in dimethyl carbonate over 6 hours reaction time at 90 °C. After aqueous work-up,

N-(1-(4-bromophenyl)but-3-en-1-yl)-1,1-diphenylmethanimine was obtained in 90% (88 mg) yield. Brown oil; ¹**H-NMR** (400 MHz, CDCl₃): δ 7.65 (d, *J* = 7.4 Hz, 2H), 7.41-7.30 (m, 8H), 7.18 (d, *J* = 8.2 Hz, 2H), 7.03 (d, *J* = 3.0 Hz, 2H), 5.67-5.56 (m, 1H), 4.98-4.93 (m, 2H), 4.39-4.36 (m, 1H), 2.63 (dt, *J* = 14.4, 7.4 Hz, 1H, diastereotopic allyl-CH₂), 2.56-2.49 (m, 1H, diastereotopic allyl-CH₂) ppm; ¹³**C-NMR** (101 MHz, CDCl₃): δ 167.1 (C=N), 143.5 (C), 139.8 (C), 136.9 (C), 135.3 (CH), 131.4 (CH), 130.0 (CH), 128.9 (CH), 128.6 (CH), 128.4 (CH), 128.3 (CH), 128.0 (CH), 127.8 (CH), 120.4 (C), 117.0 (CH₂), 65.9 (CH), 43.8 (CH₂) ppm; **IR** (ATR) (cm⁻¹): 1621, 1597, 1576, 1485, 1444, 1403, 1314, 1277, 1070, 1028, 1009, 940, 913, 820, 779, 769, 728, 692, 652, 636, 616, 587, 537; **HRMS** (ESI) *m/z* calculated for C₂₃H₂₁NBr [M+H]⁺: 390.0852; found 390.0863.

1,1-diphenyl-*N***-(1-(4-(trifluoromethyl)phenyl)but-3-en-1-yl)methanimine** (4i):³ The general procedure-C was applied using 4-(trifluoromethyl)benzaldehyde (1i) ESI-15 (44 mg, 0.25 mmol, 1.0 equiv), 1,1-diphenylbut-3-en-1-amine (2a) (56 mg, 0.25 mmol, 1.0 equiv), FeCl₃ (4.05 mg, 0.025 mmol, 10 mol%) and 4 Å molecular sieves (100 mg) in dimethyl carbonate over 6 hours reaction time at 90 °C. After aqueous work-up, 1,1-diphenyl-*N*-(1-(4-(trifluoromethyl)phenyl)but-3en-1-yl)methanimine was obtained in 93% (88 mg) yield. Brown oil; ¹**H-NMR** (400 MHz, CDCl₃): δ 7.67 (d, J = 7.0 Hz, 2H), 7.54 (d, J = 7.9 Hz, 2H), 7.47-7.30 (m, 8H), 7.03 (d, J = 3.5 Hz, 2H), 5.68-5.58 (m, 1H), 4.99-4.95 (m, 2H), 4.48 (dd, J = 7.5, 5.8 Hz, 1H), 2.67 (dt, J = 14.6, 7.4 Hz, 1H, diastereotopic allyl-CH₂), 2.59-2.53 (m, 1H, diastereotopic allyl-CH₂) ppm; ¹³C-NMR (101 MHz, CDCl₃): δ 167.5 (C=N), 148.5 (C), 139.8 (C), 136.9 (C), 135.0 (CH), 130.1 (CH), 129.2 (CH), 128.6 (CH), 128.5 (CH), 128.4 (CH), 128.0 (CH), 127.8 (CH), 127.5 (C), 125.2 (q, J = 3.8 Hz), 124.3 (q, J = 270 Hz, CF₃), 117.2 (CH₂), 66.1 (CH), 43.8 (CH₂) ppm; **IR** (ATR) (cm⁻¹): 1661, 1618, 1598, 1577, 1445, 1417, 1322, 1280, 1162, 1119, 1065, 1017, 993, 941, 910, 838, 779, 733, 693, 667, 652, 638, 604; **HRMS** (ESI) *m/z* calculated for C₂₄H₂₁NF₃ [M+H]⁺: 380.1621; found 380.1632. The spectroscopic data for **4i** is in agreement with literature.³

N-(1-(4-nitrophenyl)but-3-en-1-yl)-1,1-diphenylmethanimine (4j):⁷ The general procedure-C was applied using 4-nitrobenzaldehyde (1j) (38 mg, 0.25 mmol, 1.0 equiv), 1,1-diphenylbut-3-en-1-amine (2a) (56 mg, 0.25 mmol, 1.0 equiv), FeCl₃ (4.05 mg, 0.025 mmol, 10 mol%) and 4 Å molecular sieves (100 mg) in dimethyl carbonate over 6 hours reaction time at 90 °C. After aqueous work-up, *N*-(1-

(4-nitrophenyl)but-3-en-1-yl)-1,1-diphenylmethanimine was obtained in 92% (82 mg) yield. Brown oil; ¹H-NMR (400 MHz, CDCl₃): δ 8.15 (d, *J* = 8.5 Hz, 2H), 7.67 (d, *J* = 7.6 Hz, 2H), 7.48 (d, *J* = 8.5 Hz, 2H), 7.44-7.32 (m, 6H), 7.02 (d, *J* = 3.4 Hz, 2H), 5.68-5.58 (m, 1H), 4.99-4.94 (m, 2H), 4.55-4.51 (m, 1H), 2.66 (dt, *J* = 14.3, 7.3 Hz, 1H, diastereotopic allyl-CH₂), 2.59-2.53 (m, 1H, diastereotopic allyl-CH₂) ppm; ¹³C-NMR (101 MHz, CDCl₃): δ 168.1 (C=N), 152.0 (C), 146.9 (C), 139.5 (C), 136.7 (C), 134.5 (CH), 130.3 (CH), 128.64 (CH), 128.62 (CH), 128.5 (CH), 128.1 (CH), 128.0 (CH), 127.6 (CH), 123.6 (CH), 117.6 (CH₂), 65.9 (CH), 43.8 (CH₂) ppm; **IR** (ATR) (cm⁻¹): 1622, 1596, 1517, 1489, 1444, 1341, 1313, 1279, 1107, 1013, 993, 915, 852, 829, 780, 770, 752, 726, 693, 654, 637, 617, 591, 535; **HRMS** (ESI) *m/z* calculated for C₂₃H₂₁N₂O₂ [M+H]⁺: 357.1598; found 357.1590. The spectroscopic data for **4j** is in agreement with literature.⁷

4-(1-((diphenylmethylene)amino)but-3-en-1-yl)benzonitrile (4k):⁶ The general procedure-C was applied using 4-cyanobenzaldehyde (1k) (33 mg, 0.25 mmol, 1.0 equiv), 1,1-diphenylbut-3-en-1-amine (2a) (56 mg, 0.25 mmol, 1.0 equiv), FeCl₃ (4.05 mg, 0.025 mmol, 10 mol%) and 4 Å molecular sieves (100 mg) in dimethyl ESI-16

carbonate reaction time over 6 hours at 90 °C. After aqueous work-up, 4-(1-((diphenylmethylene)amino)but-3-en-1-yl)benzonitrile was obtained in 97% (82 mg) yield. Colourless oil; ¹**H-NMR** (400 MHz, CDCl₃): δ 7.67-7.64 (m, 2H), 7.58 (d, J = 8.2 Hz, 2H), 7.43-7.31 (m, 8H), 7.02 (dd, J =6.4, 2.8 Hz, 2H), 5.62 (ddt, J =17.8, 9.3, 7.1 Hz, 1H), 4.98-4.94 (m, 2H), 4.47 (dd, J = 7.3, 5.9 Hz, 1H), 2.64 (dt, J = 14.7, 7.4 Hz, 1H, diastereotopic allyl-CH₂), 2.57-2.50 (m, 1H, diastereotopic allyl-CH₂) ppm; ¹³C-NMR (101 MHz, CDCl₃): δ 167.9 (C=N), 149.9 (C), 139.6 (C), 136.7 (C), 134.7 (CH), 132.2 (CH), 130.3 (CH), 128.6 (CH), 128.6 (CH), 128.5 (CH), 128.1 (CH), 128.0 (CH), 127.7 (CH), 119.0 (C), 117.5 (CH₂), 110.6 (C), 66.1 (CH), 43.8 (CH₂) ppm; **IR** (ATR) (cm⁻¹): 3072, 2916, 2853, 2229, 1619, 1606, 1574, 1501, 1488, 1444, 1401, 1339, 1315, 1305, 1290, 1273, 1173, 1075, 1036, 1019, 1001, 988, 951, 855, 829; HRMS (ESI) m/z calculated for C₂₄H₂₁N₂ [M+H]⁺: 337.1699; found 337.1687. The spectroscopic data for **4k** is in agreement with literature.⁶

methyl 4-(1-((diphenylmethylene)amino)but-3-en-1-yl)benzoate (4l):⁷ The general procedure-C was applied using Methyl 4-formylbenzoate (1l) (41 mg, 0.25 mmol, 1.0 equiv), 1,1-diphenylbut-3-en-1-amine (2a) (56 mg, 0.25 mmol, 1.0 equiv), FeCl₃ (4.05 mg, 0.025 mmol, 10 mol%) and 4 Å molecular sieves (100 mg) in dimethyl carbonate over 6 hours reaction time at 90 °C. After

aqueous work-up, methyl 4-(1-((diphenylmethylene)amino)but-3-en-1-yl)benzoate was obtained in 99% (91 mg) yield. Colourless oil; ¹**H-NMR** (400 MHz, CDCl₃): δ 7.96 (dd, *J* = 8.3, 1.7 Hz, 2H), 7.67 (dd, *J* = 8.2, 1.4 Hz, 2H), 7.42-7.31 (m, 8H), 7.03 (dd, *J* = 4.3, 0.9 Hz, 2H), 5.69-5.58 (m, 1H), 4.98-4.94 (m, 2H), 4.47 (dd, *J* = 9.2, 3.8 Hz, 1H), 3.89 (s, 3H), 2.71-2.64 (m, 1H, diastereotopic allyl-CH₂), 2.60-2.54 (m, 1H, diastereotopic allyl-CH₂) ppm; ¹³C-NMR (101 MHz, CDCl₃): δ 167.5 (C=N), 167.1 (C), 149.8 (C), 139.8 (C), 136.9 (C), 135.2 (CH), 130.1 (CH), 129.7 (CH), 128.6 (CH), 128.43 (CH), 128.40 (CH), 128.0 (CH), 127.8 (CH), 127.2 (CH), 117.1 (CH₂), 66.3 (CH), 52.0 (CH₃), 43.8 (CH₂) ppm; **IR** (ATR) (cm⁻¹): 1719, 1609, 1575, 1489, 1434, 1414, 1312, 1273, 1190, 1175, 1109, 1074, 1018, 994, 967, 910, 855; **HRMS** (ESI) *m/z* calculated for C₂₅H₂₄NO₂ [M+H]⁺: 370.1802; found 370.1799. The spectroscopic data for **4I** is in agreement with literature.⁷

N-(1-(1-methyl-1H-pyrazol-4-yl)but-3-en-1-yl)-1,1-diphenylmethanimine (4m): The general procedure-D was applied using 1-Methyl-1H-pyrazole-4-carboxaldehyde (1m) (28 mg, 0.25 mmol, 1.0 equiv), 1,1-diphenylbut-3-en-1-amine (2a) (56 mg, 0.25 mmol, 1.0 equiv), FeCl₃ (10.14 mg, 25 mol%) and 4 Å molecular sieves (100 mg) in ESI-17

dimethyl carbonate over 24 hours reaction time at 90 °C. After aqueous work-up, *N*-(1-(1-methyl-1H-pyrazol-4-yl)but-3-en-1-yl)-1,1-diphenylmethanimine was obtained in 94% (74 mg) yield. White solid; *mp*: 78-81 °C; ¹H-NMR (400 MHz, CDCl₃): δ 7.64-7.62 (m, 2H), 7.44-7.41 (m, 3H), 7.39-7.29 (m, 4H), 7.12-7.10 (m, 2H), 5.69 (ddt, *J* =17.3, 10.2, 7.1 Hz, 1H), 5.03-4.97 (m, 2H), 4.45 (dd, *J* = 7.6, 5.5 Hz, 1H), 3.85 (s, 3H), 2.65-2.51 (m, 2H, overlapping diastereotopic allyl-CH₂) ppm; ¹³C-NMR (101 MHz, CDCl₃): δ 166.9 (C=N), 140.0 (C), 137.4 (CH), 136.9 (C), 135.6 (CH), 130.1 (CH), 129.9 (CH), 128.6 (CH), 128.4 (CH), 128.3 (CH), 128.0 (CH), 127.8 (CH), 124.9 (C), 116.9 (CH₂), 58.2 (CH), 43.2 (CH₂), 38.9 (CH₃) ppm; **IR** (ATR) (cm⁻¹): 1657, 1622, 1595, 1574, 1561, 1488, 1446, 1439, 1417, 1392, 1312, 1277, 1178, 1160, 1073, 1047, 1018, 988, 931, 920, 865, 851; **HRMS** (ESI) *m/z* calculated for C₂₁H₂₂N₃ [M+H]⁺: 316.1808; found 316.1802.

1,1-diphenyl-*N***-(1-(pyridin-2-yl)but-3-en-1-yl)methanimine** (4n): The general procedure-D was applied using 2-pyridinecarboxaldehyde (1n) (27 mg, 0.25 mmol, 1.0 equiv), 1,1-diphenylbut-3-en-1-amine (2a) (56 mg, 0.25 mmol, 1.0 equiv), FeCl₃ (10.14 mg, 25 mol%) and 4 Å molecular sieves (100 mg) in dimethyl carbonate over 24 hours

reaction time at 90 °C. After aqueous work-up and flash chromatography, 1,1diphenyl-*N*-(1-(pyridin-2-yl)but-3-en-1-yl)methanimine was obtained in 81% (63 mg) yield. Brown oil; ¹**H-NMR** (400 MHz, CDCl₃): δ 8.51 (dd, *J* = 4.8, 0.8 Hz, 2H), 7.71-7.69 (m, 2H), 7.64 (td, *J* = 7.7, 1.8 Hz, 1H), 7.52 (d, *J* = 7.9 Hz, 1H), 7.40-7.31 (m, 6H), 7.12 (ddd, *J* = 7.3, 4.9, 1.0 Hz, 1H), 7.07 (dd, *J* = 6.5, 3.0 Hz, 2H), 5.69 (ddt, *J* =17.2, 10.1, 7.2 Hz, 1H), 5.00-4.93 (m, 2H), 4.68 (dd, *J* = 7.8, 5.0 Hz, 1H), 2.78-2.65 (m, 2H, overlapping diastereotopic allyl-CH₂) ppm; ¹³C-NMR (101 MHz, CDCl₃): δ 168.1 (C=N), 163.4 (C), 148.9 (CH), 140.1 (C), 136.8 (C), 136.4 (CH), 135.5 (CH), 130.0 (CH), 128.7 (CH), 128.4 (CH), 128.3 (CH), 128.0 (CH), 127.9 (CH), 121.9 (CH), 121.8 (CH), 116.9 (CH₂), 67.8 (CH), 42.6 (CH₂) ppm; **IR** (ATR) (cm⁻¹): 3058, 2924, 1623, 1588, 1570, 1489, 1470, 1445, 1432, 1314, 1278, 1048, 992, 912, 780; **HRMS** (ESI) *m/z* calculated for C₂₂H₂₁N₂ [M+H]⁺: 313.1699; found 313.1696.

1,1-diphenyl-*N***-(1-(pyridin-3-yl)but-3-en-1-yl)methanimine** (40):⁶ The general procedure-D was applied using 3-pyridinecarboxaldehyde (10) (27 mg, 0.25 mmol, 1.0 equiv), 1,1-diphenylbut-3-en-1-amine (2a) (56 mg, 0.25 mmol, 1.0 equiv), FeCl₃ (10.14 mg, 25 mol%) and 4 Å molecular sieves (100 mg) in dimethyl carbonate over 24 hours reaction time at 90 °C. After aqueous work-up and flash chromatography, 1,1-

diphenyl-*N*-(1-(pyridin-3-yl)but-3-en-1-yl)methanimine was obtained in 84% (66 mg) yield. Pale yellow solid; *mp*: 80-82 °C; ¹**H-NMR** (400 MHz, CDCl₃): δ 8.47 (d, *J* = 3.7 Hz, 1H), 8.43 (s, 1H), 7.74 (dt, *J* = 7.9,

1.8 Hz, 1H), 7.68-7.65 (m, 2H), 7.44-7.42 (m, 3H), 7.40-7.30 (m, 3H), 7.25-7.21 (m, 1H), 7.04 (dd, J = 6.4, 2.9 Hz, 2H), 5.64 (ddt, J = 20.3, 9.6, 7.1 Hz, 1H), 4.99-4.95 (m, 2H), 4.47 (dd, J = 7.5, 5.8 Hz, 1H), 2.68 (dt, J = 14.8, 7.4 Hz, 1H, diastereotopic allyl-CH₂), 2.60-2.54 (m, 1H, diastereotopic allyl-CH₂) ppm; ¹³C-NMR (101 MHz, CDCl₃): δ 167.7 (C=N), 148.9 (CH), 148.3 (CH), 139.8 (C), 139.7 (C), 136.8 (C), 134.9 (CH), 134.8 (CH), 130.1 (CH), 128.6 (CH), 128.5 (CH), 128.0 (CH), 127.7 (CH), 123.4 (CH), 117.4 (CH₂), 64.1 (CH), 43.6 (CH₂) ppm; **IR** (ATR) (cm⁻¹): 2930, 2895, 1644, 1619, 1593, 1573, 1488, 1473, 1443, 1421, 1313, 1286, 1192, 1177, 1152, 1124, 1104, 1074, 1025, 1000, 931, 912, 870, 836; **HRMS** (ESI) *m/z* calculated for C₂₂H₂₁N₂ [M+H]⁺: 313.1699; found 313.1703. The spectroscopic data for **40** is in agreement with literature.⁶

1,1-diphenyl-*N***-(1-(pyridin-4-yl)but-3-en-1-yl)methanimine** (4p): The general procedure-D was applied using 4-pyridinecarboxaldehyde (1p) (27 mg, 0.25 mmol, 1.0 equiv), 1,1-diphenylbut-3-en-1-amine (2a) (56 mg, 0.25 mmol, 1.0 equiv), FeCl₃ (10.14 mg, 25 mol%) and 4 Å molecular sieves (100 mg) in dimethyl carbonate over 24 hours reaction time at 90 °C. After aqueous work-up and flash chromatography, 1,1-

diphenyl-*N*-(1-(pyridin-4-yl)but-3-en-1-yl)methanimine was obtained in 83% (65 mg) yield. Brown solid; *mp*: 93-95 °C; ¹H-NMR (400 MHz, CDCl₃): δ 8.51 (d, *J* = 5.5 Hz, 2H), 7.68-7.66 (m, 2H), 7.43-7.32 (m, 6H), 7.24 (d, *J* = 5.5 Hz, 2H), 7.03 (dd, *J* = 6.5, 2.9 Hz, 2H), 5.69-5.58 (m, 1H), 4.99-4.95 (m, 2H), 4.41 (dd, *J* = 7.5, 5.6 Hz, 1H), 2.65 (dt, *J* = 14.8, 7.5 Hz, 1H, diastereotopic allyl-CH₂), 2.58-2.52 (m, 1H, diastereotopic allyl-CH₂) ppm; ¹³C-NMR (101 MHz, CDCl₃): δ 168.1 (C=N), 153.1 (C), 149.8 (CH), 139.6 (C), 136.7 (C), 134.7 (CH), 130.3 (CH), 128.6 (CH), 128.55 (CH), 128.49 (CH), 128.1 (CH), 127.7 (CH), 122.4 (CH), 117.5 (CH₂), 65.4 (CH), 43.4 (CH₂) ppm; **IR** (ATR) (cm⁻¹): 1621, 1593, 1574, 1442, 1407, 1315, 1275, 1258, 1178, 992, 921, 809; **HRMS** (ESI) *m/z* calculated for C₂₂H₂₁N₂ [M+H]⁺: 313.1699; found 313.1697.

1,1-diphenyl-*N***-(1-(quinolin-4-yl)but-3-en-1-yl)methanimine (4q):** The general procedure-D was applied using 4-Quinolinecarboxaldehyde (1q) (39 mg, 0.25 mmol, 1.0 equiv), 1,1-diphenylbut-3-en-1-amine (2a) (56 mg, 0.25 mmol, 1.0 equiv), FeCl₃ (10.14 mg, 25 mol%) and 4 Å molecular sieves (100 mg) in dimethyl carbonate over 24 hours reaction time at 90 °C. After aqueous work-up and flash chromatography,

1,1-diphenyl-*N*-(1-(quinolin-4-yl)but-3-en-1-yl)methanimine was obtained in 80% (72 mg) yield. Colourless oil; ¹**H-NMR** (400 MHz, CDCl₃): δ 8.87 (d, *J* = 4.5 Hz, 1H), 8.11 (d, *J* = 8.1 Hz, 1H), 7.82 (d, *J* = 8.4 Hz, 1H), 7.74-7.69 (m, 3H), 7.67-7.63 (m, 1H), 7.44-7.31 (m, 7H), 6.95 (d, *J* = 6.9 Hz, 2H), 5.71 (ddt, *J* ESI-19 =17.2, 10.2, 7.1 Hz, 1H), 5.21 (dd, *J* = 8.0, 4.7 Hz, 1H), 5.00-4.95 (m, 2H), 2.81 (dt, *J* = 15.1, 7.6 Hz, 1H, diastereotopic allyl-CH₂), 2.73-2.67 (m, 1H, diastereotopic allyl-CH₂) ppm; ¹³C-NMR (101 MHz, CDCl₃): δ 168.2 (C=N), 150.4 (CH), 150.3 (C), 148.6 (C), 139.6 (C), 136.6 (C), 135.0 (CH), 130.3 (CH), 130.2 (CH), 128.8 (CH), 128.7 (CH), 128.5 (CH), 128.4 (CH), 128.1 (CH), 127.7 (CH), 126.1 (CH), 125.8 (C), 123.4 (CH), 119.7 (CH), 117.3 (CH₂), 62.1 (CH), 43.3 (CH₂) ppm; **IR** (ATR) (cm⁻¹): 3059, 1621, 1587, 1570, 1507, 1489, 1444, 1314, 1284, 1239, 1180, 1158, 1074, 1048, 1029, 993, 915, 869, 850; **HRMS** (ESI) *m/z* calculated for C₂₆H₂₃N₂ [M+H]⁺: 363.1856; found 363.1849.

N-(but-3-en-1-yl)-1,1-diphenylmethanimine (4r): The general procedure-E was applied using Paraformaldehyde (1r) (8.3 mg, 0.275 mmol, 1.1 equiv), 1,1-diphenylbut-3-en-1-amine (2a) (56 mg, 0.25 mmol, 1.0 equiv), FeCl₃ (4.05 mg, 0.025 mmol, 10 mol%) and 4 Å molecular sieves (100 mg) in dimethyl carbonate over 2 hours reaction time at 50 °C. After aqueous work-up, *N*-(but-3-en-1-yl)-1,1-diphenylmethanimine was obtained in 89% (52

mg) yield. Colourless oil; ¹**H-NMR** (400 MHz, CDCl₃): δ 7.60-7.58 (m, 2H), 7.47-7.29 (m, 6H), 7.17-7.15 (m, 2H), 5.82 (ddt, *J* =17.0, 10.2, 6.8 Hz, 1H), 5.06-4.96 (m, 2H), 3.45 (t, *J* = 7.2 Hz, 2H), 2.44 (q, J = 7.0 Hz, 2H) ppm; ¹³C-NMR (101 MHz, CDCl₃): δ 168.2 (C=N), 140.0 (C), 137.0 (C), 136.8 (CH), 129.8 (CH), 128.5 (CH), 128.4 (CH), 128.3 (CH), 128.0 (CH), 127.9 (CH), 115.7 (CH₂), 53.4 (CH₂), 35.7 (CH₂) ppm; **IR** (ATR) (cm⁻¹): 2916, 1621, 1598, 1576, 1490, 1445, 1314, 1276, 1177, 1153, 1073, 1028, 998, 940, 909, 778; **HRMS** (ESI) *m/z* calculated for C₁₇H₁₈N [M+H]⁺: 236.1434; found 236.1424.

N-(hex-5-en-3-yl)-1,1-diphenylmethanimine (4s): The general procedure-E was applied using Propionaldehyde (1s) (15 mg, 0.25 mmol, 1.0 equiv), 1,1-diphenylbut-3-en-1-amine (2a) (56 mg, 0.25 mmol, 1.0 equiv), FeCl₃ (4.05 mg, 0.025 mmol, 10 mol%) and 4 Å molecular sieves (100 mg) in dimethyl carbonate over 2 hours reaction time at 50 °C. After aqueous work-up, *N*-(hex-5-en-3-yl)-1,1-diphenylmethanimine was

obtained in 92% (61 mg) yield. Brown oil; ¹**H-NMR** (400 MHz, CDCl₃): δ 7.60 (d, *J* = 6.8 Hz, 2H), 7.44-7.29 (m, 6H), 7.15-7.13 (m, 2H), 5.75-5.64 (m, 1H), 5.02-4.96 (m, 2H), 3.31-3.24 (m, 1H), 2.31 (t, *J* = 6.7 Hz, 2H), 1.63-1.56 (m, 2H), 0.81 (t, *J* = 7.4 Hz, 3H) ppm; ¹³**C-NMR** (101 MHz, CDCl₃): δ 166.7 (C=N), 140.4 (C), 137.7 (C), 136.3 (CH), 130.1 (CH), 129.6 (CH), 128.4 (CH), 128.2 (CH), 128.1 (CH), 128.0 (CH), 116.3 (CH₂), 63.3 (CH), 41.0 (CH₂), 29.0 (CH₂), 11.0 (CH₃) ppm; **IR** (ATR) (cm⁻¹): 2961, 2928, 1621, 1598, 1577, 1445, 1349, 1314, 1276, 1177, 1073, 1028, 981, 941, 910, 777; **HRMS** (ESI) *m/z* calculated for C₁₉H₂₂N [M+H]⁺: 264.1747; found 264.1745.

N-(hept-1-en-4-yl)-1,1-diphenylmethanimine (4t): The general procedure-E was applied using butyraldehyde (1t) (18 mg, 0.25 mmol, 1.0 equiv), 1,1-diphenylbut-3-en-1-amine (2a) (56 mg, 0.25 mmol, 1.0 equiv), FeCl₃ (4.05 mg, 0.025 mmol, 10 mol%) and 4 Å molecular sieves (100 mg) in dimethyl carbonate over 2 hours reaction time

at 50 °C. After aqueous work-up, *N*-(hept-1-en-4-yl)-1,1-diphenylmethanimine was obtained in 92% (64 mg) yield. Colourless oil; ¹**H-NMR** (400 MHz, CDCl₃): δ 7.59 (d, *J* = 7.3 Hz, 2H), 7.43-7.28 (m, 6H), 7.15-7.13 (m, 2H), 5.76-5.65 (m, 1H), 5.02-4.96 (m, 2H), 3.39-3.33 (m, 1H), 2.31 (t, *J* = 6.7 Hz, 2H), 1.65-1.47 (m, 2H), 1.34-1.09 (m, 2H), 0.81 (t, *J* = 7.3 Hz, 3H) ppm; ¹³**C-NMR** (101 MHz, CDCl₃): δ 166.5 (C=N), 140.4 (C), 137.6 (C), 136.3 (C), 130.1 (CH), 129.6 (CH), 128.4 (CH), 128.2 (CH), 128.1 (CH), 128.0 (CH), 116.3 (CH₂), 66.7 (CH), 41.4 (CH₂), 38.5 (CH₂), 19.8 (CH₂), 14.2 (CH₃) ppm; **IR** (ATR) (cm⁻¹): 2955, 2929, 2870, 1622, 1598, 1576, 1489, 1445, 1314, 1279, 1178, 1073, 1028, 996, 908, 769; **HRMS** (ESI) *m/z* calculated for C₂₀H₂₄N [M+H]⁺: 278.1903; found 278.1893.

N-(2-methylhex-5-en-3-yl)-1,1-diphenylmethanimine (4u): The general procedure-E was applied using isobutyraldehyde (1u) (18 mg, 0.25 mmol, 1.0 equiv), 1,1-diphenylbut-3-en-1-amine (2a) (56 mg, 0.25 mmol, 1.0 equiv), FeCl₃ (4.05 mg, 0.025 mmol, 10 mol%) and 4 Å molecular sieves (100 mg) in dimethyl carbonate over 6 hours reaction time at 50 °C. After aqueous work-up, *N*-(2-methylhex-5-en-3-yl)-1,1-

diphenylmethanimine was obtained in 91% (63 mg) yield. Colourless oil; ¹H-NMR (400 MHz, CDCl₃): δ 7.60 (dd, *J* = 8.1, 1.6 Hz, 2H), 7.43-7.28 (m, 6H), 7.14 (dd, *J* = 7.7, 1.6 Hz, 1H), 5.70 (ddt, *J* =17.3, 10.1, 7.3 Hz, 1H), 5.02-4.95 (m, 2H), 3.17-3.13 (m, 1H), 2.40-2.29 (m, 2H), 1.90-1.78 (m, 1H), 0.94 (d, *J* = 6.8 Hz, 3H), 0.85 (d, *J* = 6.8 Hz, 3H) ppm; ¹³C-NMR (101 MHz, CDCl₃): δ 166.3 (C=N), 140.5 (C), 137.6 (C), 136.7 (CH), 129.5 (CH), 128.4 (CH), 128.2 (CH), 128.1 (CH), 128.0 (CH), 127.9 (CH), 116.2 (CH₂), 67.0 (CH), 38.5 (CH₂), 32.9 (CH), 19.7 (CH₃), 18.6 (CH₃) ppm; **IR** (ATR) (cm⁻¹): 2957, 2869, 1623, 1597, 1577, 1489, 1468, 1444, 1382, 1365, 1314, 1279, 1178, 1073, 1028, 992, 954, 908, 768; **HRMS** (ESI) *m/z* calculated for C₂₀H₂₄N [M+H]⁺: 278.1903; found 278.1909.

N-(2,2-dimethylhex-5-en-3-yl)-1,1-diphenylmethanimine (4v): The general procedure-E was applied using pivalaldehyde (1v) (22 mg, 0.25 mmol, 1.0 equiv), 1,1-diphenylbut-3-en-1-amine (2a) (56 mg, 0.25 mmol, 1.0 equiv), FeCl₃ (4.05 mg, 0.025 mmol, 10 mol%) and 4 Å molecular sieves (100 mg) in dimethyl carbonate over 6 hours reaction time at 50 °C. After aqueous work-up, *N*-(2,2-dimethylhex-5-en-3-yl)-1,1-diphenylmethanimine was obtained in 86% (63 mg) yield. Colourless oil; ¹**H-NMR** (400 MHz, CDCl₃): δ 7.60 (d, *J* = 6.9 Hz, 2H), 7.39-7.30 (m, 6H), 7.16 (d, *J* = 6.0 Hz, 2H), 5.67-5.57 (m, 1H), 4.99-4.94 (m, 2H), 3.10-3.07 (m, 1H), 2.40-2.37 (m, 2H), 0.91 (s, 9H) ppm; ¹³**C-NMR** (101 MHz, CDCl₃): δ 165.6 (C=N), 140.7 (C), 138.1 (CH), 137.4 (C), 129.4 (CH), 128.8 (CH), 128.5 (CH), 127.9 (CH), 127.86 (CH), 127.82 (CH), 116.0 (CH₂), 69.9 (CH), 36.1 (CH₂), 35.5 (C), 27.0 (CH₃) ppm; **IR** (ATR) (cm⁻¹): 2952, 2865, 1624, 1597, 1578, 1488, 1477, 1445, 1391, 1361, 1311, 1277, 1178, 1073, 1028, 992, 955, 909, 777; **HRMS** (ESI) *m/z* calculated for C₂₁H₂₆N [M+H]⁺: 292.2060; found 292.2050.

N-(1-cyclopropylbut-3-en-1-yl)-1,1-diphenylmethanimine (4w): The general procedure-E was applied using Cyclopropanecarboxaldehyde (1w) (20 mg, 0.285 mmol, 1.14 equiv), 1,1-diphenylbut-3-en-1-amine (2a) (56 mg, 0.25 mmol, 1.0 equiv), FeCl₃ (4.05 mg, 0.025 mmol, 10 mol%) and 4 Å molecular sieves (100 mg) in dimethyl carbonate over 6 hours reaction time at 50 °C. After aqueous work-up and flash

chromatography, *N*-(1-cyclopropylbut-3-en-1-yl)-1,1-diphenylmethanimine was obtained in 89% (61 mg) yield. Colourless oil; ¹H-NMR (400 MHz, CDCl₃): δ 7.60 (dd, *J* = 8.1, 1.5 Hz, 2H), 7.42-7.28 (m, 6H), 7.12 (dd, *J* = 7.6, 1.6 Hz, 2H), 5.75 (ddt, *J* =17.3, 10.1, 7.3 Hz, 1H), 5.04-4.95 (m, 2H), 2.78 (dd, *J* = 13.6, 6.6 Hz, 1H), 2.50-2.40 (m, 2H), 1.18-1.09 (m, 1H), 0.46-0.34 (m, 2H), 0.15-0.03 (m, 2H) ppm; ¹³C-NMR (101 MHz, CDCl₃): δ 166.2 (C=N), 140.3 (C), 137.4 (C), 136.3 (CH), 129.7 (CH), 128.5 (CH), 128.2 (CH), 128.1 (CH), 128.01 (CH), 127.99 (CH), 116.2 (CH₂), 65.9 (CH), 41.6 (CH₂), 17.0 (CH), 2.7 (CH₂), 2.6 (CH₂) ppm; **IR** (ATR) (cm⁻¹): 3077, 3002, 1623, 1597, 1577, 1489, 1444, 1313, 1282, 1178, 1073, 1018, 993, 956, 907, 820, 768; **HRMS** (ESI) *m/z* calculated for C₂₀H₂₂N [M+H]⁺: 276.1747; found 276.1751.

N-(1-cyclohexylbut-3-en-1-yl)-1,1-diphenylmethanimine (4x): The general procedure-E was applied using Cyclohexanecarboxaldehyde (1x) (28 mg, 0.25 mmol, 1.0 equiv), 1,1-diphenylbut-3-en-1-amine (2a) (56 mg, 0.25 mmol, 1.0 equiv), FeCl₃ (4.05 mg, 0.025 mmol, 10 mol%) and 4 Å molecular sieves (100 mg) in dimethyl carbonate over 6 hours reaction time at 50 °C. After aqueous work-up, *N*-(1-

cyclohexylbut-3-en-1-yl)-1,1-diphenylmethanimine was obtained in 94% (75 mg) yield. Colourless oil; ¹H-NMR (400 MHz, CDCl₃): δ 7.59 (d, *J* = 6.5 Hz, 2H), 7.43-7.29 (m, 6H), 7.14-7.13 (m, 2H), 5.76-5.65 (m, 1H), 5.01-4.96 (m, 2H), 3.15 (dd, *J* = 12.3, 5.9 Hz, 1H), 2.40-2.28 (m, 2H), 1.79-1.62 (m, 5H), 1.26-1.01 (m, 5H), 0.95-0.86 (m, 1H) ppm; ¹³C-NMR (101 MHz, CDCl₃): δ 166.1 (C=N), 140.5 (C), 137.6 (C), 136.7 (CH), 129.5 ESI-22 (CH), 128.4 (CH), 128.3 (CH), 128.1 (CH), 128.0 (CH), 127.9 (CH), 116.2 (CH₂), 66.5 (CH), 42.9 (CH), 38.3 (CH₂), 30.2 (CH₂), 29.3 (CH₂), 26.6 (CH₂) ppm; **IR** (ATR) (cm⁻¹): 2922, 2850, 1623, 1445, 1313, 1277, 1073, 1028, 992, 907, 777; **HRMS** (ESI) *m/z* calculated for C₂₃H₂₈N [M+H]⁺: 318.2216; found 318.2211.

1,1-diphenyl-*N***-(1,1,1-trifluoropent-4-en-2-yl)methanimine (4y):** The general procedure-C was applied using trifluoracetaldehyde monohydrate (1y) (29 mg, 0.25 mmol, 1.0 equiv), 1,1-diphenylbut-3-en-1-amine (2a) (56 mg, 0.25 mmol, 1.0 equiv), FeCl₃ (4.05 mg, 0.025 mmol, 10 mol%) and 4 Å molecular sieves (100 mg) in dimethyl carbonate over 6 hours reaction time at 90 °C. After aqueous work-up, 1,1-diphenyl-

N-(1,1,1-trifluoropent-4-en-2-yl)methanimine was obtained in 98% (74 mg) yield. (*Note: In place of trifluoracetaldehyde monohydrate, Trifluoroacetaldehyde methyl hemiacetal is also tried, delivered simillar result*). White solid, *mp*: 50-52 °C; ¹H-NMR (400 MHz, CDCl₃): δ 7.65-7.63 (m, 2H), 7.48-7.31 (m, 6H), 7.16-7.13 (m, 2H), 5.54 (ddt, *J* =17.2, 10.0, 7.3 Hz, 1H), 5.08-5.02 (m, 2H), 3.95-3.87 (m, 1H), 2.64-2.51 (m, 2H) ppm; ¹³C-NMR (101 MHz, CDCl₃): δ 172.5 (C=N), 139.1 (C), 135.9 (C), 133.2 (CH), 130.7 (CH), 128.9 (d, *J* = 15.8 Hz, CH), 128.6 (CH), 128.1 (d, *J* = 9.3 Hz, CH), 126.95, 122.8 (q, *J* = 278 Hz, CF₃), 118.5 (CH₂), 63.6 (q, *J* = 80.8 Hz, CH), 34.5 (d, *J* = 2.0 Hz, CH₂) ppm; **IR** (ATR) (cm⁻¹): 1624, 1577, 1447, 1434, 1376, 1316, 1263, 1228, 1162, 1142, 1101, 1075, 1059, 1017, 997, 952, 911, 864, 785; **HRMS** (ESI) *m/z* calculated for C₁₈H₁₇NF₃ [M+H]⁺: 304.1308; found 304.1308.

1,1-diphenyl-*N***-(1,1,1-trichloropent-4-en-2-yl)methanimine** (4z): The general procedure-C was applied using chloral hydrate (1z) (41 mg, 0.25 mmol, 1.0 equiv), 1,1-diphenylbut-3-en-1-amine (2a) (56 mg, 0.25 mmol, 1.0 equiv), FeCl₃ (4.05 mg, 0.025 mmol, 10 mol%) and 4 Å molecular sieves (100 mg) in dimethyl carbonate over 6 hours reaction time at 90 °C. After aqueous work-up, 1,1-diphenyl-*N*-(1,1,1-

trichloropent-4-en-2-yl)methanimine was obtained in 97% (86 mg) yield. Colourless oil; ¹H-NMR (400 MHz, CDCl₃): δ 7.67 (d, *J* = 7.2 Hz, 2H), 7.45-7.32 (m, 6H), 7.26-7.24 (m, 2H), 5.57 (ddt, *J* = 17.1, 9.9, 7.5 Hz, 1H), 5.11-5.04 (m, 2H), 4.13 (dd, *J* = 8.9, 2.9 Hz, 1H), 2.91-2.85 (m, 1H, diastereotopic allyl-CH₂), 2.77-2.69 (m, 1H, diastereotopic allyl-CH₂) ppm; ¹³C-NMR (101 MHz, CDCl₃): δ 171.0 (C=N), 139.6 (C), 136.0 (C), 134.2 (CH), 130.6 (CH), 130.1 (CH), 129.1 (CH), 128.7 (CH), 128.6 (CH), 128.2 (CH), 128.1 (CH), 118.6 (CH₂), 103.2(CCl₂), 75.8 (CH), 37.6 (CH₂) ppm; **IR** (ATR) (cm⁻¹): 1624, 1597, 1576, 1445, 1314, 1278, 993, 918, 810, 776, 763, 720, 692, 665, 652; **HRMS** (ESI) *m/z* calculated for C₁₈H₁₇NCl₃ [M+H]⁺: 352.0421; found 352.0419.

1,1-diphenyl-*N***-(1-phenylhex-5-en-1-yn-3-yl)methanimine (4aa):** The general procedure-C was applied using phenylpropargyl aldehyde (1aa) (33 mg, 0.25 mmol, 1.0 equiv), 1,1-diphenylbut-3-en-1-amine (2a) (56 mg, 0.25 mmol, 1.0 equiv), FeCl₃ (4.05 mg, 0.025 mmol, 10 mol%) and 4 Å molecular sieves (100 mg) in dimethyl carbonate over 6 hours reaction time at 90 °C. After aqueous work-

up and flash chromatography, 1,1-diphenyl-*N*-(1-phenylhex-5-en-1-yn-3-yl)methanimine was obtained in 93% (78 mg) yield. Brown oil; ¹**H-NMR** (400 MHz, CDCl₃): δ 7.65-7.63 (m, 2H), 7.50-7.37 (m, 6H), 7.34-7.25 (m, 7H), 5.84 (ddt, *J* =17.2, 10.2, 7.1 Hz, 1H), 5.14-5.05 (m, 2H), 4.36-4.33 (m, 1H), 2.72-2.60 (m, 2H, overlapping diastereotopic allyl-CH₂) ppm; ¹³**C-NMR** (101 MHz, CDCl₃): δ 169.6 (C=N), 139.8 (C), 136.5 (C), 134.7 (CH), 131.8 (CH), 130.3 (CH), 128.9 (CH), 128.7 (CH), 128.5 (CH), 128.1 (CH), 128.1 (CH), 128.0 (CH), 127.9 (CH), 123.5 (C), 117.4 (CH₂), 90.1 (C), 83.6 (C), 54.6 (CH), 41.8 (CH₂) ppm; **IR** (ATR) (cm⁻¹): 1618, 1597, 1577, 1489, 1445, 1316, 1274, 1220, 1195, 1176, 1150, 1105, 1073, 1028, 999, 940, 917; **HRMS** (ESI) *m/z* calculated for C₂₅H₂₂N [M+H]⁺: 336.1747; found 336.1749.

(*E*)-1,1-diphenyl-*N*-(1-phenylhexa-1,5-dien-3-yl)methanimine (4ab):³ The general procedure-C was applied using *trans*-cinnamaldehyde (1ab) (33 mg, 0.25 mmol, 1.0 equiv), 1,1-diphenylbut-3-en-1-amine (2a) (56 mg, 0.25 mmol, 1.0 equiv), FeCl₃ (4.05 mg, 0.025 mmol, 10 mol%) and 4 Å molecular sieves (100 mg) in dimethyl carbonate over 6 hours reaction time at 90 °C. After aqueous work-

up and flash chromatography, (*E*)-1,1-diphenyl-*N*-(1-phenylhexa-1,5-dien-3-yl)methanimine was obtained in 91% (77 mg) yield. Colourless oil; ¹H-NMR (400 MHz, CDCl₃): δ 7.64 (dd, *J* = 8.2, 1.5 Hz, 2H), 7.45-7.41 (m, 3H), 7.37-7.26 (m, 7H), 7.21-7.16 (m, 3H), 6.39 (dd, *J* = 16.0, 6.2 Hz, 1H), 6.28 (d, *J* = 16.0 Hz, 1H), 7.64 (dd, *J* = 8.2, 1.5 Hz, 1H), 5.07-4.98 (m, 2H), 4.08 (dd, *J* = 12.8, 6.3 Hz, 1H), 2.57-2.43 (m, 2H, overlapping diastereotopic allyl-CH₂) ppm; ¹³C-NMR (101 MHz, CDCl₃): δ 167.6 (C=N), 140.1 (C), 137.4 (C), 137.2 (C), 135.5 (CH), 132.1 (CH), 130.0 (CH), 129.4 (CH), 128.6 (CH), 128.5 (CH), 128.3 (CH), 128.0 (CH), 127.9 (CH), 127.8 (CH), 127.2 (CH), 126.3 (CH), 116.8 (CH₂), 64.7 (CH), 41.8 (CH₂) ppm; IR (ATR) (cm⁻¹): 1659, 1619, 1597, 1576, 1491, 1445, 1314, 1276, 1177, 1154, 1072, 1028, 988, 964, 940, 912, 808; HRMS (ESI) *m/z* calculated for C₂₅H₂₄N [M+H]⁺: 338.1903; found 338.1905. The spectroscopic data for **4ab** is in agreement with literature.³

ethyl 2-((diphenylmethylene)amino)pent-4-enoate (4ac):⁶ The general procedure-C was applied using ethyl glyoxylate, ca 50% solution in toluene (1ac) (51.2 mg, 0.25 mmol, 1.0 equiv), 1,1-diphenylbut-3-en-1-amine (2a) (56 mg, 0.25 mmol, 1.0 equiv), FeCl₃ (4.05 mg, 0.025 mmol, 10 mol%) and 4 Å molecular sieves (100 mg) in dimethyl carbonate over 6 hours reaction time at 90 °C. After aqueous work-up, ethyl 2-

((diphenylmethylene)amino)pent-4-enoate was obtained in 98% (76 mg) yield. Colourless oil; ¹H-NMR (400 MHz, CDCl₃): δ 7.64 (d, *J* = 7.3 Hz, 2H), 7.46-7.30 (m, 6H), 7.18-7.17 (m, 2H), 5.74-5.64 (m, 1H), 5.09-5.00 (m, 2H), 4.21-4.11 (m, 3H), 2.73-2.59 (m, 2H, overlapping diastereotopic allyl-CH₂), 1.26 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C-NMR (101 MHz, CDCl₃): δ 171.8 (C), 170.5 (C), 139.7 (C), 136.5 (C), 134.4 (CH), 130.3 (CH), 128.9 (CH), 128.6 (CH), 128.5 (CH), 128.0 (CH), 128.0 (CH), 117.5 (CH₂), 65.4 (CH), 60.9 (CH₂), 38.2 (CH₂), 14.2 (CH₃) ppm; **IR** (ATR) (cm⁻¹): 1735, 1656, 1597, 1577, 1446, 1316, 1274, 1176, 1150, 1074, 1027, 999, 940, 918, 809; **HRMS** (ESI) *m/z* calculated for C₂₀H₂₂NO₂ [M+H]⁺: 308.1645; found 308.1639. The spectroscopic data for **4ac** is in agreement with literature.⁶

5-((diphenylmethylene)amino)oct-7-en-1-yl methyl carbonate (4ad'): The general procedure-C was applied using 5-hydroxypentanal (1ad) (26 mg, 0.25 mmol, 1.0 equiv), 1,1-diphenylbut-3-en-1-amine (2a) (56 mg, 0.25 mmol, 1.0 equiv), FeCl₃ (4.05 mg, 0.025 mmol, 10 mol%) and 4 Å molecular sieves (100 mg) in dimethyl carbonate over 6 hours reaction

time at 90 °C. After aqueous work-up, 5-((diphenylmethylene)amino)oct-7-en-1-yl methyl carbonate was obtained in 96% yield. Colourless oil; ¹H-NMR (400 MHz, CDCl₃): δ 7.58-7.12 (m, 10 H), 5.70-5.68 (m, 1H), 5.11-4.98 (m, 2H), 4.14-4.08 (m, 2H), 3.74 (s, 3H), 3.36-3.35 (m, 1H), 2.31-2.30 (m, 2H), 1.57-1.21 (m, 6H) ppm; ¹³C-NMR (101 MHz, CDCl₃): δ 166.8 (C=N), 155.9 (C=O), 140.2 (C), 137.5 (C), 130.1 (CH), 129.7 (CH), 128.4 (CH), 128.3 (CH), 128.1 (CH), 128.0 (CH), 127.9 (CH), 116.6 (CH₂), 68.1 (CH₂), 61.6 (CH), 54.6 (CH₃), 41.2 (CH₂), 35.6 (CH₂), 28.8 (CH₂), 22.6 (CH₂) ppm; **IR** (ATR) (cm⁻¹): 2937, 1745, 1660, 1622, 1598, 1577, 1442, 1387, 1315, 1260, 1177, 1153, 1073, 1028, 998, 941, 916, 791; **HRMS** (ESI) *m/z* calculated for C₂₃H₂₈NO₃ [M+H]⁺: 366.2064; found 366.2048.

5-((diphenylmethylene)amino)oct-7-en-1-ol (4ad): The general procedure-C was applied using 5-hydroxypentanal (1ad) (26 mg, 0.25 mmol, 1.0 equiv), 1,1-diphenylbut-3-en-1-amine (2a) (56 mg, 0.25 mmol, 1.0 equiv), FeCl₃ (4.05 mg, 0.025 mmol, 10 mol%) and 4 Å molecular sieves (100 mg) in **propylene** ESI-25

carbonate over 6 hours reaction time at 90 °C. After aqueous work-up, 5-((diphenylmethylene)amino)oct-7-en-1-ol was obtained in 94% (72 mg) yield. Colourless oil; ¹H-NMR (400 MHz, CDCl₃): δ 7.59-7.57 (m, 2H), 7.45-7.28 (m, 6H), 7.14-7.12 (m, 2H), 5.69 (ddt, J = 17.3, 10.1, 7.2 Hz, 1H), 5.02-4.96 (m, 2H), 3.57 (t, J = 6.6 Hz, 2H), 3.40-3.33 (m, 1H), 2.30 (t, J = 6.8 Hz, 2H), 1.69-1.52 (m, 3H), 1.51-1.39 (m, 2H), 1.38-1.16 (m, 2H) ppm; ¹³C-NMR (101 MHz, CDCl₃): δ 166.9 (C=N), 140.2 (C), 137.5 (C), 136.1 (CH), 129.7 (CH), 128.4 (CH), 128.3 (CH), 128.1 (CH), 128.0 (CH), 128.0 (CH), 116.5 (CH₂), 62.7 (CH₂), 61.7 (CH), 41.3 (CH₂), 35.7 (CH₂), 32.8 (CH₂), 22.6 (CH₂) ppm; **IR** (ATR) (cm⁻¹): 3340,,3059, 2932, 2860, 1620, 1598, 1576, 1489, 1444, 1353, 1314, 1282, 1178, 1073, 1054, 1028, 994, 908, 768; **HRMS** (ESI) *m*/*z* calculated for C₂₁H₂₆NO [M+H]⁺: 308.2009; found 308.1998.

(*E*)-1,1-diphenyl-*N*-(1-phenylpent-3-en-1-yl)methanimine (4ae): The general procedure-C was applied using benzaldehyde (1a) (27 mg, 0.25 mmol, 1.0 equiv), 2-methyl-1,1-diphenylbut-3-en-1-amine (2b) (59 mg, 0.25 mmol, 1.0 equiv), FeCl₃ (4.05 mg, 0.025 mmol, 10 mol%) and 4 Å molecular sieves (100 mg) in dimethyl carbonate over 6 hours reaction time at 90 °C. After aqueous work-up, (*E*)-1,1-

diphenyl-*N*-(1-phenylpent-3-en-1-yl)methanimine was obtained in 98% (80 mg) yield. Colourless oil; ¹H-NMR (400 MHz, CDCl₃): δ 7.67-7.65 (m, 2H), 7.41-7.40 (m, 3H), 7.35-7.18 (m, 8H), 7.07 (dd, *J* = 6.5, 2.9 Hz, 2H), 5.47-5.33 (m, 1H), 5.27-5.21 (m, 1H), 4.40 (dd, *J* = 7.6, 5.9 Hz, 1H), 2.71-2.47 (m, 2H, overlapping diastereotopic allyl-CH₂) 1.49 (d, *J* = 11.9 Hz, 3H) ppm; ¹³C-NMR (101 MHz, CDCl₃): δ 166.4 (C=N), 144.7 (C), 140.1 (C), 137.2 (C), 129.8 (CH), 128.6 (CH), 128.3 (CH), 128.2 (CH), 128.1 (CH), 128.0 (CH), 127.9 (CH), 127.2 (CH), 127.1 (CH), 126.6 (CH), 125.7 (CH), 66.6 (CH), 36.9 (CH₂), 12.9 (CH₃) ppm; **IR** (ATR) (cm⁻¹): 3022, 1622, 1598, 1576, 1490, 1445, 1313, 1278, 1177, 1073, 1027, 1000, 967, 942, 910, 770; **HRMS** (ESI) *m/z* calculated for C₂₄H₂₄N [M+H]⁺: 326.1903; found 326.1891.

methyl (E)-4-(1-((diphenylmethylene)amino)pent-3-en-1-yl)benzoate (4af):

The general procedure-C was applied using methyl 4-formylbenzoate (11) (41 mg, 0.25 mmol, 1.0 equiv), 2-methyl-1,1-diphenylbut-3-en-1-amine (2b) (59 mg, 0.25 mmol, 1.0 equiv), FeCl₃ (4.05 mg, 0.025 mmol, 10 mol%) and 4 Å molecular sieves (100 mg) in dimethyl carbonate over 6 hours reaction

time at 90 °C. After aqueous work-up, methyl (*E*)-4-(1-((diphenylmethylene)amino)pent-3-en-1yl)benzoate was obtained in 93% (89 mg) yield. Colourless oil; ¹**H-NMR** (400 MHz, CDCl₃): δ 7.96 (d, *J* = 8.3 Hz, 2H), 7.68-7.65 (m, 2H), 7.42-7.30 (m, 8H), 7.05-7.03 (m, 2H), 5.51-5.37 (m, 1H), 5.26-5.19 (m, 1H), ESI-26 4.43 (dd, J = 11.1, 6.4 Hz, 1H), 3.89 (s, 3H), 2.70-2.45 (m, 2H, overlapping diastereotopic allyl-CH₂), 1.46 (dd, J = 3.7, 3.1 Hz, 3H) ppm; ¹³C-NMR (101 MHz, CDCl₃): δ 167.2 (C=N), 150.0 (C), 139.8 (C), 136.9 (C), 130.0 (CH), 129.6 (CH), 128.6 (CH), 128.5 (CH), 128.4 (CH), 128.3 (CH), 128.2 (CH), 128.0 (CH), 127.8 (CH),127.7 (CH), 127.6 (CH), 127.2 (CH), 126.5 (CH), 126.2 (CH), 66.4 (CH), 52.0 (CH₃), 36.8 (CH₂), 12.9(CH₃) ppm; **IR** (ATR) (cm⁻¹): 1719, 1609, 1575, 1434, 1415, 1312, 1273, 1190, 1174, 1109, 1074, 1018, 1000, 965, 909, 856; **HRMS** (ESI) *m/z* calculated for C₂₆H₂₆NO₂ [M+H]⁺: 384.1958; found 384.1959.

(*E*)-*N*-(pent-3-en-1-yl)-1,1-diphenylmethanimine (4ag): The general procedure-C was applied using paraformaldehyde (1r) (9 mg, 0.30 mmol, 1.2 equiv), 2-methyl-1,1-diphenylbut-3-en-1-amine (2b) (59 mg, 0.25 mmol, 1.0 equiv), FeCl₃ (4.05 mg, 0.025 mmol, 10 mol%) and 4 Å molecular sieves (100 mg) in dimethyl carbonate over 6 hours reaction

time at 90 °C. After aqueous work-up, (*E*)-*N*-(pent-3-en-1-yl)-1,1-diphenylmethanimine was obtained in 96% (60 mg) yield. Brown oil; ¹**H-NMR** (400 MHz, CDCl₃): δ 7.61-7.58 (m, 2H), 7.47-7.29 (m, 6H), 7.17-7.15 (m, 2H), 5.52-5.43 (m, 1H), 5.42-5.35 (m, 1H), 3.41 (t, *J* = 7.3 Hz, 1H), 2.43 (q, *J* = 7.2 Hz, 2H), 1.59 (dd, *J* = 6.3, 1.0 Hz, 3H) ppm; ¹³**C-NMR** (101 MHz, CDCl₃): δ 168.2 (C=N), 140.0 (C), 137.0 (C), 129.8 (CH), 128.4 (CH), 128.4 (CH), 128.3 (CH), 128.2 (CH), 128.0 (CH), 127.9 (CH), 125.2 (CH), 53.7 (CH₂), 28.9 (CH₂), 12.87 (CH₃) ppm; **IR** (ATR) (cm⁻¹): 2915, 1621, 1598, 1577, 1489, 1444, 1314, 1276, 1177, 1073, 1028, 940, 910, 778; **HRMS** (ESI) *m/z* calculated for C₁₈H₂₀N [M+H]⁺: 250.1590; found 250.1582.

(*E*)-*N*-(hept-5-en-3-yl)-1,1-diphenylmethanimine (4ah): The general procedure-C was applied using propionaldehyde (1s) (15 mg, 0.25 mmol, 1.0 equiv), 2-methyl-1,1-diphenylbut-3-en-1-amine (2b) (59 mg, 0.25 mmol, 1.0 equiv), FeCl₃ (4.05 mg, 0.025 mmol, 10 mol%) and 4 Å molecular sieves (100 mg) in dimethyl carbonate over 6

hours reaction time at 90 °C. After aqueous work-up, (*E*)-*N*-(hept-5-en-3-yl)-1,1-diphenylmethanimine was obtained in 95% (66 mg) yield. Brownoil; ¹**H-NMR** (400 MHz, CDCl₃): δ 7.61-7.58 (m, 2H), 7.43-7.28 (m, 6H), 7.15-7.13 (m, 2H), 5.51-5.41 (m, 1H), 5.38-5.27 (m, 1H), 3.29-3.18 (m, 1H), 2.30 (t, *J* = 6.5 Hz, 2H), 1.63-1.54 (m, 4H), 0.81 (t, *J* = 7.4 Hz, 3H) ppm; ¹³**C-NMR** (101 MHz, CDCl₃): δ 166.5 (C=N), 140.4 (C), 137.7 (C), 129.6 (CH), 128.4 (CH), 128.2 (CH), 128.1 (CH), 128.0 (CH), 127.9 (CH), 126.6 (CH), 125.3 (CH), 63.5 (CH), 33.9 (CH₂), 29.0 (CH₂), 13.0 (CH₃), 11.1 (CH₃), ppm; **IR** (ATR) (cm⁻¹): 2960, 2917, 2872, 1622, 1598, 1577, 1445, 1314, 1284, 1073, 1028, 987, 947, 910, 777; **HRMS** (ESI) *m/z* calculated for C₂₀H₂₄N [M+H]⁺: 278.1903; found 278.1895.

1-phenylbut-3-en-1-amine (5a):⁸ The general procedure-G was applied using 1,1diphenyl-*N*-(1-phenylbut-3-en-1-yl)methanimine (4a) (1.464 g, 4.7 mmol, 1.0 equiv), after aqueous work-up, 1-phenylbut-3-en-1-amine was obtained in 90% (0.626 g) yield. Pale yellow oil; ¹**H-NMR** (400 MHz, CDCl₃): δ 7.35-7.30 (m, 4H), 7.27-7.22 (m,

1H), 5.75 (dddd, *J* =16.7, 10.2, 7.9, 6.3 Hz, 1H), 5.14-5.05 (m, 2H), 3.99 (dd, *J* = 8.0, 5.4 Hz, 1H), 2.51-2.40 (m, 1H, diastereotopic allyl-CH₂), 2.41-2.32 (m, 1H, diastereotopic allyl-CH₂), 1.69 (bs, 2H) ppm; ¹³C-NMR (101 MHz, CDCl₃): δ 145.9 (C), 135.5 (CH), 128.4 (CH), 127.0 (CH), 126.3 (CH), 117.6 (CH₂), 55.4 (CH), 44.2 (CH₂) ppm; **IR** (ATR) (cm⁻¹): 3269, 3063, 3029, 2977, 2929, 1640, 1542, 1493, 1452, 1435, 1372, 1296, 1072, 1027, 993, 914, 840, 757. The spectroscopic data for **5a** is in agreement with literature.⁸

benzophenone (6):⁹ The general procedure-G was applied using 1,1-diphenyl-*N*-(1-phenylbut-3-en-1-yl)methanimine (4a) (1.464 g, 4.7 mmol, 1.0 equiv), after aqueous work-up, benzophenone was obtained in 91% (0.782 mg) yield. Colourless oil; ¹H-NMR (400 MHz, CDCl₃): δ 7.82-7.79 (m, 2H), 7.61-7.56 (m, 2H), 7.48 (t, *J* = 7.5 Hz, 2H) ppm;

¹³**C-NMR** (101 MHz, CDCl₃): δ 196.7 (C=O), 137.7 (C), 132.4 (CH), 130.1 (CH), 128.3 (CH) ppm; **IR** (ATR) (cm⁻¹): 1655, 1597, 1446, 1316, 1274, 940, 918, 763, 695. The spectroscopic data for **6** is in agreement with literature.⁹

7 References

- (*a*) D. Prat, A. Wells, J. Hayler, H. Sneddon, C. R. McElroy, S. Abou-Shehada and P. J. Dunn, *Green Chem.*, 2016, **18**, 288; (*b*) H. E. Gottlieb, G. Graczyk-Millbrandt, G. G. A. Inglis, A. Nudelman, D. Perez, Y. Qian, L. E. Shuster, H. F. Sneddon and R. J. Upton, *Green Chem.*, 2016, **18**, 3867; (*c*) C. M. Alder, J. D. Hayler, R. K. Henderson, A. M. Redman, L. Shukla, L. E. Shuster and H. F. Sneddon, *Green Chem.*, 2016, **18**, 3879.
- S. C. Ensign, E. P. Vanable, G. D. Kortman, L. J. Weir and K. L. Hull, J. Am. Chem. Soc., 2015, 137, 13748.
- 3) M. Rueping and A. P. Antonchick, Angew. Chem. Int. Ed., 2008, 47, 10090.
- 4) H. Ren and W. D. Wulff, J. Am. Chem. Soc., 2011, 133, 5656.
- 5) K.-H. Shen and C.-F. Yao, J. Org. Chem., 2006, 71, 3980.
- 6) A. A. Yeagley and J. J. Chruma, Org. Lett., 2007, 9, 2879.
- 7) X. Qian, P. Ji, C. He, J.-O. Zirimwabagabo, M. M. Archibald, A. A Yeagley and J. J. Chruma, *Org. Lett.*, 2014, **16**, 5228.
- 8) A. Hietanen, T. Saloranta, S. Rosenberg, E. Laitinen, R. Leino and L. T. Kanerva, *Eur. J. Org. Chem.*, 2010, **2010**, 909.
- 9) Y. Yuan, X. Shi and W. Liu, Synlett 2011, 4, 559.
- 10) D.-Y. Li, S. Liu, A. Wang, X.-P. Zhu and P.-N. Liu, ACS Catal., 2018, 8, 6407.
- (a) G. Verardo, A. G. Giumanini, P. Strazzolini and M. Poiana, Synth. Commun., 1988, 18, 1501;
 (b) G. Voit, M. Holderbaum, T. Witzel and A. Aumüller (BASF Aktiengesellschaft, Germany), US5679855A, 1997.

ESI-31

ESI-34

 					<u> </u>	- I - I								· · ·	· · · ·			1		<u> </u>		· · · ·	-
210	200	190	180	170	160	150	140	130	120	110	100 f1 (ppm)	90	80	70	60	50	40	30	20	10	0	-10	

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

ESI-52

ESI-63

ESI-67

ESI-69

ESI-79

ESI-91

