Topotactic transformation of homogeneous phosphotungastomolybdic acid materials to heterogeneous solid acid catalyst for carbohydrate conversion to alkyl levulinate

Dinesh Gupta*a, Chandrakant Mukesha, Kamal K. Pant*a,

Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110 016, India Corresponding Author: email: dineshguptagkp@gmail.com kkpant@chemical.iitd.ac.in

Both ¹H and ¹³C NMR spectra of the product exposed the formation of EMF and EL as the sole products, and their observed characteristic signals in the NMR spectra are as follows; EMF (¹H-NMR-CDCl₃): δ 9.614 (s, 1H), 7.19 (d, J= 3.99 Hz, 1H), 6.50 (d, J= 3.99 Hz, 1H), 4.50 (s, 2H), 3.57 (q, 2H), 1.22 ppm (t, 3H); ¹³C-NMR (CDCl₃): δ 15.03, 64.72,66.61,111.00,122.022,152.50,158.74,177.75 ppm. EL (¹H-NMR-CDCl₃): δ 4.10 (q, 2H), 2.73 (t, 2H), 2.53 (t, 2H), 2.16 (s, 3H),1.21 ppm (t,3H); ¹³C-NMR (CDCl₃): δ 14.12,27.97, 29.55,37.90,60.61,173.0,207.4 ppm.

The solid mixture are dissolve in CDCl₃ along with international standard mesitylene, run the NMR spectra: EMF (¹H-NMR-CDCl₃): δ 9.584 (s, 1H), 7.19 (d, J= 3.99 Hz, 1H), 6.50 (d, J= 3.99 Hz, 1H), 4.50 (s, 2H), 3.57 (q, 2H), 1.22 ppm (t, 3H); ¹³C-NMR (CDCl₃): δ 15.03, 64.72,66.61,111.00,122.022,152.50,158.74,177.75 ppm. EL (¹H-NMR-CDCl₃): δ 4.10 (q, 2H), 2.73 (t, 2H), 2.53 (t, 2H), 2.16 (s, 3H),1.21 ppm (t,3H); ¹³C-NMR (CDCl₃): δ 14.12,27.97, 29.55,37.90,60.61,173.0,207.4 ppm. HMF (¹H-NMR-CDCl₃): δ 9.50 (s, 1H),7.17 (d, J= 4.39 Hz, 1H), 6.50 (d, J=4.39, 1H), 4.66 (d,3.39 Hz, 1H)

HPLC analysis of remaing sugars and dehydrated and rehydrated product:

Glucose, fructose, HMF, EMF, and 5-HMF were analyzed using high-performance liquid chromatography (HPLC). HPLC analysis was performed using Agilent technology 1200 infinity equipped with Bio-Rad Aminex HPx-87H 300 7.8 mm columns, UV-detector for sugar dehydration product and RI detector for sugar dehydration products. The eluent was 5 mM sulphuric acid with a flow rate of 0.6 mL per minute and the injection volume was 20 μ L. Low boiling product were analyzed in gas chromatograph (Nucon 5700) equipped with FID and TCD detector. The liquid product were analyzed in GC-TCD after separation of catalyst,after dilution of 20 μ L product solution in 1 mL methanol. The liquid products were also analyzed in GC-MS equipped with DB-5 column.The identification of products in the sample was performed using a pure form of the products to determine retention time and calibration curve formation. The 5-HMF, AML and AL were calculated as given below in equation.

$$Yield of product (Mol \%) = \frac{Mol of product}{Mol of starting substrate} * 100$$

 $Conversion~(\%) = \frac{Glucose~in - glucose~out}{Total~glucose~in} *~100$

$Selectivity (\%) = \frac{Mol \% \text{ yield of desired product}}{total \text{ yield of all desired product}} * 100$

Fig. S1: ¹H-NMR of ML

Fig. S2: ¹³C-NMR of ML

Fig. S4: ¹H-NMR of PL

-

Fig. S5: ¹³C-NMR of PL

Fig. 6: ¹H-NMR of BL

Fig.S7: Secondary electron image of as synthesized $HPW_4Mo_{10}O_x$ -Cys. Analysed positions for EPMA are indicated in the picture

Element -	Р	0	N	Мо	W
Point ↓	Weight %				
1	1.52	14.85	0.32	32.15	23.79
2	0.53	8.96	0.91	9.47	7.303
3	1.79	14.40	0.00	33.25	22.04
4	1.51	20.45	1.49	31.80	24.34
5	1.40	10.65	0.00	27.70	19.72
6	1.58	14.87	0.00	31.80	23.45
7	1.54	18.71	0.00	32.87	25.29
8	1.72	13.16	0.02	34.27	24.29
9	0.49	4.04	0.22	8.84	6.66
10	1.65	22.33	0.91	32.15	28.02

Table S1 : 10 point elemental mapping of as-synthesized $HPW_4Mo_{10}O_x$ -Cys materials

Table S2 : 10 point elemental mapping of as-synthesized $HPW_4Mo_{10}O_x$ materials

Element -	Р	0	Мо	W
Point ♥	Weight %			
1	1.45	24.52	28.31	35.05
2	1.45	24.27	28.75	34.47
3	1.35	24.74	26.43	34.41

4	1.29	17.01	23.43	37.20
5	1.29	17.48	24.71	31.66
6	1.13	10.76	22.72	32.97
7	1.39	25.66	27.29	33.55
8	1.45	25.54	28.96	33.67
9	1.38	22.33	28.39	33.99
10	1.47	25.68	29.69	28.02

Fig. S8: Elemental analysis by TEM-EDX of HPMoWOx

Fig. S9: FESEM-Elemental Mapping of as-synthesis materials

Fig. S10: Some more TEM images of as-synthesis materials

Fig. S11: Some more FESEM images of as-synthesis materials

Fig. S12: Some more SEM images of as-synthesis materials

Fig. S13: Some more TEM and HRTEM images of as-synthesis materials.