Supplementary data for

Anti-corrosion porous RuO₂/NbC anodes for the electrochemical oxidation of phenol

Jing Ma^a, Guotong Qin^a*, Wei Wei^b, Tianliang Xiao^a, Shaomin Liu^c, Lei Jiang^a

^aKey Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Shahe Campus, Beijing 102206, China.

^bCollege of Biochemical Engineering, Beijing Union University, 18 Sanqu Fatouxili, Chaoyang District, Beijing 100023, China

^cDepartment of Chemical Engineering, Curtin University, Perth, Western Australia 6845, Australia

* Corresponding author. Email address: qingt@buaa.edu.cn Tel: +86-10-61716768.

Fig. S1. Pore size distribution of NbC.

Fig. S2 The effects of current density on phenol removal (a), COD removal and ACE at 8 h (b) with an initial phenol concentration of 100 mg L^{-1} . The effect of cell voltage on phenol removal (c), COD removal and ACE at 8 h (d) with an initial phenol concentration of 100 mg L^{-1} . The effect of electrode distance on phenol removal (e), COD removal and ACE at 8 h (f) with a current density of 20 mA cm⁻² and an initial phenol concentration of 100 mg L^{-1} .

Table S1 The atomic ratio of Ru with different coating times detected by EDS.

Samples	The atomic ratio of Ru(%)
One coating time	0.56
Two coating time	0.49
There coating time	1.20
Four coating time	2.13

Calculation equation

The mineralization current efficiency (MCE) was calculated using Eq. (S1)

 $MCE = \frac{nFV(TOC_0 - TOC_t)}{4.32 \times 10^7 mlt} \times 100 \text{ (S1)}$

Compound removal rate = $\frac{(C_0 - C_t) \times V}{S \times t}$ (S2)

COD removal rate =
$$\frac{(COD_0 - COD)_t \times V}{S \times t}$$
 (S3)

TOC removal rate =
$$\frac{(TOC_0 - TOC_t) \times V}{S \times t}$$
 (S4)

where C_0 and C_t are the concentrations of pollutants (mg L⁻¹) in solution at the initial time and time t (h), respectively, COD_0/TOC_0 and COD_t/TOC_t are the chemical oxygen demand or the total organic carbon concentration (mg L⁻¹) at the initial time and time t (h), respectively, I is the current (A), F is the Faraday constant (96485 C mol⁻¹), V is the volume of electrolyte (L), S is the electrode area (cm²), 8 is the equivalent mass of oxygen (geq⁻¹), 4.32×10⁷ is a conversion factor to convert to the same units (3600 s h⁻¹×12,000 mg of C mol⁻¹), m is the number of pollutant carbon atoms, and (n) is the number of electrons consumed per molecule of pollutant.