Supplementary Information

Optimizing electron-rich arylamine derivatives in thiophene-fused as π bridgebased hole transporting materials for perovskite solar cells

Xiaorui Liu* and Xing Liu

^aKey Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of

Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China

*Corresponding Authors

E-mail: liuxiaorui@swu.edu.cn (X. Liu)

Fig. S1 Chemical structure of the reported hole transporting material Z26.

Fig. S2 Optimized structure for the hole transporting materials from B3P86/6-311G(d,p) calculations.

Fig. S3 Linearity of HOMO and LUMO energy between theoretical calculations and experimental data.

Fig. S4 Simulated absorption spectra (a) and photoluminescence spectra (b) of H1 using the TD-BMK/6-31g(d) functional and basis

set in tetrahydrofuran together with the experimental UV-spectra.

Fig. S5 Main hole-hopping pathways and computational parameters (center-of-mass distance *D* highlighted in red color) on basis of crystal structures for Z26 and FDT. Hole mobility of u_{exp} come from the reference¹.

Fig. S6 Recommended synthesis schemes and chemical structures of H01-H04.

	IP	EA	HOMO (Exp.)	HOMO(Th.)	LUMO (Exp.)	LUMO(Th.)	Ref.
AS37	5.93	0.73	-5.03	-5.08	-1.99	-1.52	2
BTT-1	5.97	0.63	-5.2	-5.21	-1.98	-1.31	3
H-Di	6.10	1.02	-5.27	-5.30	-2.22	-1.70	4
Z25	5.92	1.21	-5.18	-5.14	-2.44	-1.90	1
FDT	5.95	0.79	-5.16	-5.09	-2.28	-1.75	5
X59	5.96	0.81	-5.15	-5.09	-2.10	-1.52	6
H-Tri	6.05	0.82	-5.27	-5.33	-2.15	-1.48	4
spiro-OMeTAD	5.76	0.84	-5.1	-5.05	-2.12	-1.53	1
Th101	5.98	1.23	-5.25	-5.20	-2.47	-1.90	7
Tth101	5.97	1.48	-5.27	-5.24	-2.59	-2.15	7
apv-EC	6.32	1.04	-5.28	-5.38	-	-	8
ТРВС	6.13	1.20	-5.33	-5.35	-2.39	-2.04	9
TPBS	6.16	1.22	-5.3	-5.35	-2.45	-2.12	9

Table S1 HOMO and LUMO energy levels of theoretical calculation and experimental values for HTMs.

Table S2 Calculated HOMO, LUMO, IP and EA together with experimental values for designed HTMs.

	НОМО	НОМО	НОМО	LUMO	LUMO	LUMO	IPa	НОМО	EA ^a	LUMO
	(th.) <i>^a</i>	$(\exp.)^b$	(meas.) ^c	$(\mathrm{th})^a$	$(\exp.)^d$	(meas.) ^c		(exp.') ^e		(exp.') ^f
H01	-5.31	-5.25		-2.16	-2.56		6.03	-5.25	1.51	-2.64
H02	-5.31	-5.25		-2.24	-2.62		6.01	-5.24	1.58	-2.69
H03	-5.32	-5.26		-2.34	-2.68		6.00	-5.24	1.67	-2.76
H04	-5.35	-5.28		-2.45	-2.76		6.01	-5.24	1.80	-2.85
Z26	-5.05	-5.08	5.16 ^h	-2.35	-2.69	-2.77^{h}	5.77	-5.13	1.64	-2.74
FDT	-5.09	-5.11	5.16 ^{<i>i</i>}	-1.75	-2.28	-2.28 ⁱ	5.95	-5.22	0.79	-2.12
^{<i>a</i>} from the B3P86/6-311G(d,p) calculations; ^{<i>b</i>} from $HOMO(exp.)=0.66HOMO(cal.)-1.75$; ^{<i>c</i>} from cyclic voltammogram measure;										

^{*d*} from LUMO(exp.)=0.69LUMO(th.)-1.07; ^{*e*} from HOMO(exp.')=-0.46IP-2.48; ^{*f*} from LUMO(exp.')=-0.73EA-1.54; ^{*h*} from ref.12; ^{*i*} from ref.12; ^{*i*} from ref.28.

Table S3 Adiabatic ionization potential (IP_a in eV), electron affinities (EA_a in eV), absolute hardness (η in eV), exciton binding energy (E_b in eV), and solvation free energy (ΔG in eV) of molecules Z26.

	IPa	EA _a	η	ΔG
Z26	5.77	1.64	2.06	-0.54

Table S4 Predicted crystal data of investigated molecules.

Molecules	Space group	ρ	a(Å)	$b(\text{\AA})$	$c(\text{\AA})$	α	β	γ
H01	P1	1.02	15.38	8.84	19.85	91.50	81.35	75.11
H02	P1	1.02	19.25	31.84	4.78	85.54	82.83	71.44
H03	Pna21	1.08	31.27	8.92	19.97	90.00	90.00	90.00
H04	P212121	1.14	27.59	13.10	15.37	90.00	90.00	90.00

References:

- F. Zhang, Z. Wang, H. Zhu, N. Pellet, J. Luo, C. Yi, X. Liu, H. Liu, S. Wang, X. Li, Y. Xiao, S. M. Zakeeruddin, D. Bi and M. Grätzel, *Nano Energy*, 2017, 41, 469-475.
- 2. M. Aonuma, T. Oyamada, H. Sasabe, T. Miki and C. Adachi, *Applied Physics Letters*, 2007, **90**, 183503.
- A. Molina-Ontoria, I. Zimmermann, I. Garcia-Benito, P. Gratia, C. Roldán-Carmona, S. Aghazada, M. Graetzel, M. K. Nazeeruddin and N. Martín, *Angewandte Chemie International Edition*, 2016, 55, 6270-6274.
- 4. X. Liu, F. Kong, S. Jin, W. Chen, T. Yu, T. Hayat, A. Alsaedi, H. Wang, Z. a. Tan, J. Chen and S. Dai, *ACS Applied Materials & Interfaces*, 2017, **9**, 27657-27663.
- M. Saliba, S. Orlandi, T. Matsui, S. Aghazada, M. Cavazzini, J.-P. Correa-Baena, P. Gao, R. Scopelliti, E. Mosconi, K.-H. Dahmen, F. De Angelis, A. Abate, A. Hagfeldt, G. Pozzi, M. Graetzel and M. K. Nazeeruddin, *Nature Energy*, 2016, 1, 15017.
- 6. D. Bi, B. Xu, P. Gao, L. Sun, M. Grätzel and A. Hagfeldt, *Nano Energy*, 2016, 23, 138-144.
- 7. X. Liu, F. Kong, F. Guo, T. Cheng, W. Chen, T. Yu, J. Chen, Z. a. Tan and S. Dai, *Dyes and Pigments*, 2017, **139**, 129-135.
- S. T. Lv, Y. K. Song, J. Y. Xiao, L. F. Zhu, J. J. Shi, H. Y. Wei, Y. Z. Xu, J. Dong, X. Xu, S. R. Wang, Y. Xiao, Y. H. Luo, D. M. Li, X. G. Li and Q. B. Meng, *Electrochim Acta*, 2015, 182, 733-741.
- Y. Song, S. Lv, X. Liu, X. Li, S. Wang, H. Wei, D. Li, Y. Xiao and Q. Meng, *Chem. Commun.*, 2014, 50, 15239-15242.