ESI

For

Ultra-small Palladium Nano-particles Synthesized Using Bulky S/Se and N Donor Ligands as a Stabilizer: Application as Catalysts for Suzuki-Miyaura Coupling

Preeti Oswal¹, Aayushi Arora¹, Jolly Kaushal¹, Gyandshwar Kumar Rao², Sushil Kumar¹, Ajai K Singh³, Arun Kumar¹*

¹Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, India

²Amity School of Applied Sciences, Amity University, Gurgaon, Haryana, India

³Department Of Chemistry, Indian Institue of Technology, Delhi, New Delhi

Corresponding author: Arun Kumar, e-mail: <u>arunkaushik@gmail.com</u>,

akumar.ch@doonuniversity.ac.in

CONTENTS

S1. Syntheses of ligands L1' and L2'

Table S1. Crystal data and structural refinements for ligand L1.

Fig. S1. ¹H NMR of ligand L1'

Fig. S2. ${}^{13}C{}^{1}H$ NMR of ligand L1'

Fig. S3. ¹H NMR of ligand L2'

Fig. S4. ${}^{13}C{}^{1}H$ NMR of ligand L2'

Fig. S5. ¹H NMR of ligand L1

Fig. S6. ${}^{13}C{}^{1}H$ NMR of ligand L1

Fig. S7. ¹H NMR of ligand L2

Fig. S8. ${}^{13}C{}^{1}H$ NMR of ligand L2

Fig. S9. SEM–EDX analysis of NP's 1

Fig. S10. SEM-EDX analysis of NP's 2

Fig. S11. SEM–EDX analysis of NP's 3

- Fig. S12. SEM-EDX analysis of NP's 4
- Fig. S13. SEM–EDX analysis of NP's 6
- Fig. S14. PXRD analysis of ligand L1
- Fig. S15. PXRD analysis of ligand L2

S2. NMR Data of Coupled Products of Suzuki reaction

S3. References

S1. Syntheses of ligands L1' and L2'

Synthesis of L1' and L2': 9-Anthracenecarboxaldehyde (0.412 g, 2.0 mmol) was stirred in dry ethanol (5 mL) for 10 minutes at room temperature. The solution of 2-(phenylthio)ethylamine (0.306 g, 2.0 mmol) / 2-(phenylseleno)ethylamine (0.398 g, 2.0 mmol) was added drop wise with stirring. The mixture was further stirred for 8 h at room temperature. After completion of the reaction, the solvent was removed with a rotary evaporator resulting L1'/L2' as a yellow solid.

L1': Yield: Yellow solid (0.30 g) 86%. ¹H NMR (500 MHz, CDCl₃, 25 °C, TMS): δ(ppm): 3.62 (t, 2H, SCH₂), 4.36 (t, 2H, NCH₂), 7.20 (m, 1H, Ar-H), 7.35-7.40 (m, 2H, Ar-H), 7.48-7.60 (m, 6H, Ar-H), 8.03 (m, 2H, Ar-H), 8.49-8.60 (m, 3H, Ar-H), 9.40 (s,1H,CH=N). ¹³C{¹H}NMR (125 MHz, CDCl₃, 25 °C, TMS):34.5 (SCH₂), 61.3(NCH₂), 124.6, 124.8, 125.2, 126.7, 128, 128.5, 129, 129.5, 131.1, 135.8 (Ar-C), 162.1 (N=C).

L2^{':1}H NMR (500 MHz, CDCl₃, 25 °C, TMS): δ(ppm): 3.43 (t, 2H, SeCH₂), 4.18 (t, 2H, C-CH₂-N), 7.21-7.28 (m, 3H, Ar-H), 7.43-7.51 (m, 4H, Ar-H), 7.59 (m, 2H,Ar-H), 7.9 (m, 2H, Ar-H), 8.4-8.51 (m, 3H, Ar-H), 9.31 (s, 1H, CH=N).¹³C{¹H}NMR (125MHz, CDCl3, 25°C, TMS):28.5(SeCH₂), 62.2 (NCH₂), 124.7, 125.18, 126.2, 126.9, 127.8, 128.7, 129.1, 129.4, 129.7, 129.8, 131.1,131.7 (Ar-C), 161.7 (N=C).

	L1
Empirical formula	C ₂₃ H ₂₁ NS
Formula weight	343.47
Temperature	150.01(10) K
Wavelength	1.541
Crystal system, space group	Triclinic, <i>P</i> -1
Unit cell dimension	a = 5.3825(7) Å
	b = 15.3166(13) Å
	c = 21.472(3) Å
	$\alpha = 89.910(8)^{\circ}$
	$\beta = 84.752(10)^{\circ}$
	$\gamma = 89.905(9)^{\circ}$
V	1762.8 (4) Å ³
Ζ	4
Absorption coefficient	1.639
F(000)	728
Crystal color	Light yellow
Theta range for data collection	3.5470 to 67.0830 deg.
Density	1.294
Limiting indices	-6 <h<4, -15<h<18,="" -24<h<25<="" td=""></h<4,>
Goodness –of –fit on F ²	1.131
$R1^{\mathrm{b}}[I > 2\sigma(I)]$	0.0821
R1[all data]	0.1042
$wR2^{c}[I > 2\sigma(I)]$	0.2427
wR2 [all data]	0.2912
CCDC	1887878

TABLE S1. Crystal data and structural refinements for ligand L1

Table S2. Selected bond distances and bond angles of L1

Bond	Length(Å)	Bond Angles(°)			
S(2)–C(27)	1.765(6)	C(27)–S(2)–C(13)	104.5(3)		
S(2)–C(13)	1.826(6)	C(45)–N(3)–C(33)	113.9(4)		
N(3)–C(45)	1.436(8)				
N(3)-C(33)	1.492(7)				

Fig. S1. ¹H NMR of ligand L1'

Fig. S2. ${}^{13}C{}^{1}H$ NMR of ligand L1'

Fig. S3. ¹H NMR of ligand L2'

Fig. S4. ${}^{13}C{}^{1}H$ NMR of ligand L2'

Fig. S5. ¹H NMR of ligand L1

Fig. S6. $^{13}C{^{1}H}$ NMR of ligand L1

Fig. S7. ¹H NMR of ligand L2

Fig. S8. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR of ligand L2


```
Spectrum: test 2700
```

Element	Series	unn. C [wt.%]	norm. C [wt.%]	Atom. C [at.%]	Error	(3 Sigma) [wt.%]
Palladium Carbon Sulfur	L-series K-series K-series	62.10 12.67 4.14	78.70 16.05 5.25	33.02 59.67 7.30		6.04 5.11 0.54
	Total:	78.91	100.00	100.00		

Fig. S9. SEM–EDX analysis of NP's 1

EDAX TEAM

Full Area 1

Lsec: 30.0 0 Cnts 0.000 keV Det: Apolio X-SDD Det

eZAF Smart Quant Results

Element	Weight %	Atomic %	Error %
ск	0.21	0.54	99.99
NK	19.41	42.52	48.70
ок	18.57	35.60	43.44
sк	5.26	5.03	27.33
P dL	56.55	16.31	9.82

Fig. S10. SEM–EDX analysis of NP's $\mathbf{2}$

Spectrum:	test 2729	9				
Element	Series	unn. C [wt.%]	norm. C [wt.%]	Atom. C [at.%]	Error	(3 Sigma [wt.%
Carbon Palladium Sulfur	K-series L-series K-series	1.25 36.75 2.96	3.05 89.72 7.23	19.18 63.77 17.05		1.3 3.7 0.4
	Total:	40.96	100.00	100.00		

Fig. S11. SEM–EDX analysis of NP's 3

Spectrum: test 2704

Element	Series	unn. C [wt.%]	norm. C [wt.%]	Atom. C [at.%]	Error	(3 Sigma) [wt.%]
Carbon Selenium Palladium	K-series L-series L-series	5.80 11.92 35.06	10.99 22.58 66.43	50.13 15.67 34.20		3.23 1.91 3.50
	Total:	52.77	100.00	100.00		

Fig. S12. SEM-EDX analysis of NP's 4

Spectrum: test 2705

Element	Series	unn. C [wt.%]	norm. C [wt.%]	Atom. C [at.%]	Error	(3	Sigma) [wt.%]
Carbon Selenium Palladium	K-series L-series L-series	12.89 15.43 50.30	16.40 19.62 63.98	61.64 11.22 27.14			9.15 2.77 5.41
	Total:	78.62	100.00	100.00			

Fig. S13. SEM–EDX analysis of NP's 6

Fig. S14. PXRD analysis of ligand L1

Fig. S15. PXRD analysis of ligand L2

S2. NMR Data of Coupled Products of Suzuki reaction

4-Nitrobiphenyl.¹ Pale yellow solid. ¹H NMR (500 MHz, CdCl₃): δ 7.406-7.515 (m, 3H), 7.609 (d, 2H), 7.709 (d, 2H), 8.266 (d, 2H).

4-Phenylbenzonitrile.¹ Pale yellow solid. ¹H NMR (500 MHz, CdCl₃): δ 7.339-7.447 (m, 3H, aromatic), 7.490-7.521(m, 3H, aromatic), 7.539-7.608(m, 3H, aromatic).

Biphenyl-4-carboxaldehyde.² Light yellow solid. ¹H NMR (500 MHz, CdCl₃): δ 7.391-7.508 (m, 3H), 7.628-7.655 (m, 3H), 7.755 (d, 2H), 7.955 (d, 2H), 10.058 (s, 1H).

Biphenyl-4-carboxylic acid.³ White solid. ¹H NMR (500 MHz, CdCl₃): δ 7.393-7.523 (m, 3H), 7.727 (d, 2H), 7.793 (d, 2H), 8.026 (d, 2H).

4-Methylbiphenyl.¹ Colorless solid. ¹HNMR (300 MHz, CDCl₃): δ 2.375 (s, 3H), 7.228 (d, 2H), 7.274-7.323 (m, 1H), 7.378-7.427 (m, 2H), 7.479 (d, 2H), 7.552-7.580(m, 2H).

4–Phenylaniline.¹ Brown solid. ¹H NMR (500 MHz, CDCl3): δ 3.722 (s, 2H), 6.752 (d, 2H), 7.246–7.286 (m, 1H), 7.364–7.428 (m, 4H), 7.533 (d, 2H).

4-Hydroxybiphenyl.³ Brown solid. ¹H NMR (500 MHz, CDCl3): δ 4.915 (s, 1H, OH), 6.998 (d, 2H), 7.300–7.548 (m, 7H).

S3. References

1. R. K. Arvela and N. E. Leadbeater, Org. Lett., 2005, 7, 2101.

2. B. Tao and D. W. J. Boykin, Org. Chem., 2004, 69, 4330.

3. G. M. Scheuermann, L. Rumi, P. Steurer, W. Bannwarth, R. Mulhaupt, J. Am. Chem. Soc., 2009, **131**, 8262.