Electronic Supplementary Information

Electronic, magnetic properties of black phosphorene/Tl₂S heterostructure with transition metal atoms intercalation: a first-principles study

Yusheng Wang^{*a,c}, Xiaoyan Song ^a, Nahong Song^{b,c}, Tianjie Zhang^a, Xiaohui Yang^a, Weifen Jiang^a, Jianjun Wang^d

^a College of Physics and Electronics, North China University of Water Resources and Electric Power, Zhengzhou, Henan, 450046, China

^b College of Computer and Information Engineering, Henan University of Economics and Law, Zhengzhou, Henan, 450000, China

^c International Joint Research Laboratory for Quantum Functional Materials of Henan, and School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001, China ^d College of Science, Zhongyuan University of Technology, Zhengzhou 450007, China Corresponding author: wangyusheng@ncwu.edu.cn

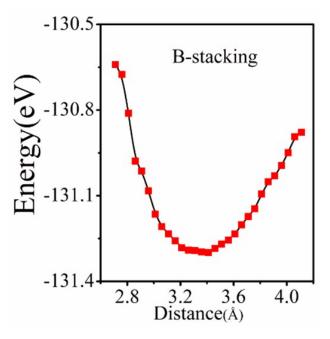


Fig. S1. The total energies as a function of the distance between black phosphorene and Tl_2S of BP/Tl_2S .

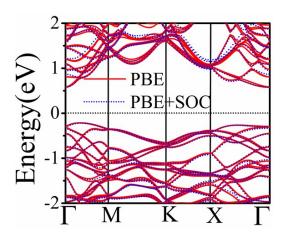


Fig. S2. Band structures for BP/Tl_2S heterostructure with and without SOC effect.

.

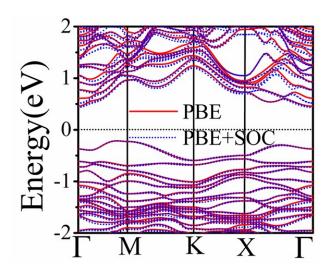


Fig. S3. Band structure for Ni-BP/Tl₂S with and without SOC effect.

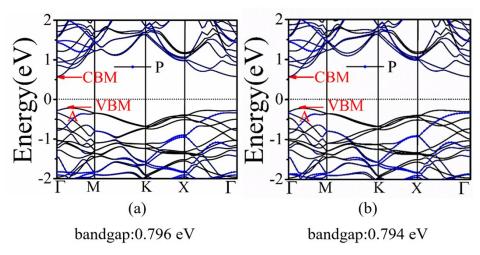


Fig. S4. Band structures for BP/Tl₂S (a) A-stacking, (b) B-stacking