Electronic Supplementary Information (ESI)

Glyme-Li salt equimolar molten solvates with iodide/triiodide redox anions

Keisuke Shigenobu, Azusa Nakanishi, Kazuhide Ueno,* Kaoru Dokko, and Masayoshi Watanabe

Department of Chemistry and Biotechnology, Yokohama National University, 79-5 Tokiwadai,

Hodogaya-ku, Yokohama 240-8501, Japan.

CORRESPONDING AUTHOR: To whom correspondence should be addressed. Telephone/Fax: +81-

45-339-3951. E-mail: ueno-kazuhide-rc@ynu.ac.jp

Fig. S1 Cyclic voltammogram on Pt disk electrode of at a scan rate of 10 mV s⁻¹ in [Li(G4)][TFSA] containing 5 mM [Li(G4)]I. Reference electrode: Li/Li^+ in 1M LiTFSA in G4 solution.

Chemical diffusion coefficient of anions and ionicity

The limiting current value ($|I_{lim}|$) are defined in eq. S1. The chemical diffusion coefficient was obtained by substituting the current value for the following:

$$|I_{\rm lim}| = 4nFcDr_0 \qquad (S1)$$

where *n* denotes the number of electrons, *F* for Faraday constant, *c* for concentration of an anion, *D* for chemical diffusion coefficient and r_0 for disk electrode radius.

The molar conductivity ratio (iconicity, $\Lambda/\Lambda_{\rm NE}$) was calculated by dividing the ideal ionic conductivity ($\Lambda_{\rm NE}$) into the experimental one (Λ). Finally, these values are summarised in **Table S1**.

Sample	D_G	D_{Li}	D_{anion}	Λ	$arLambda_{ m NE}$	$\Lambda/\Lambda_{\rm NE}$
	$[10^{-7} \mathrm{cm}^2 \mathrm{s}^{-1}]$	$[10^{-7} \mathrm{cm}^2 \mathrm{s}^{-1}]$	$[10^{-7} cm^2 s^{-1}]$	$[S \text{ cm}^2 \text{ mol}^{-1}]$	$[S \text{ cm}^2 \text{ mol}^{-1}]$	[-]
[Li(G4Et)]I	0.86	0.76	4.36	0.46	1.73	0.27
[Li(G4Et)]I ₃	4.46	4.87	2.84	2.89	2.61	1.11

Table S1 Diffusion coefficients, molar conductivities and ionicity of [Li(G4Et)]I and $[Li(G4Et)]I_3$ at 60 °C.

Theoretical gravimetric capacity of catholyte.

Theoretical gravimetric capacity of catholyte $(C_{\rm C})$ is given below:

$$C_{\rm C}$$
 [mAh g⁻¹] = 100*nF*/3600 $M_{\rm C}$ (S2),

where *n* indicates the number of moles relating to electron transfer, $M_{\rm C}$ for the total molecular weight of catholyte and *F* for Faraday constant. Thus, the capacity of [Li(G4Et)]I₃ was calculated to 85.91 mAh g⁻¹.

Fig. S2 Time-dependent cell voltage of [Li(G4Et)]I and [Li(G4Et)]I₃.

Fig. S3 DSC curve of $[Li(G4Et)_{1/3}]I$.

Fig. S4 (a) Charge-discharge curves of Li | 1 mol dm⁻³ Li[TFSA] in G4Et | LICGC | 1 mol dm⁻³ LiI₃ in G4Et cell at 60 °C. (b) charge-discharge capacity and Coulombic efficiency as a function of cycle number.