Electrochemical measurements: Electrochemical measurements were carried out with a three electrode system on a Metrohm autolab electrochemical workstation (Zahner, Germany). Briefly, a glassy carbon (GC) electrode with a diameter of 3 mm served as a substrate for the working electrode. Platinum disk electrode and Ag/AgCl (3.5 M KCl) were used as counter and reference electrodes, respectively. To prepare the working electrode, 10 mg of the catalysts were dispersed in the water- ethanol mixture (1:4) and 50 μ L of 5 wt% Nafion solutions, and further ultrasonicated to form a uniform black ink. Next, 10 μ L of catalyst ink was pipette onto the glassy carbon surface to result in a 1.3 mg cm⁻² loading for all samples including commercial Pt/C catalyst (20 wt%, Johnson Matthey). Further, N₂ flow was used through the electrolyte in the cell for 30 min to saturate it. The Linear Sweep voltammetry (CV) experiments were performed in N₂-saturated 0.5 M aqueous H₂SO₄ electrolyte solutions with a scan rate of 10 mV s⁻¹. All potentials reported were referenced to the reversible hydrogen electrode (RHE) through a RHE calibration. Equation 1 was used for the conversion of potential from Ag/AgCl to RHE.

$$E_{\rm RHE} = E_{\rm Ag/AgCl} + 0.059 \rm pH + E_{\rm Ag/AgCl}^0 \qquad (1)$$

$$(E_{Ag/AgCl}^{0} = +0.199V)$$

The overpotential (η) was calculated at different current density (x) using Equation (2) as

$$\eta^x = \mathcal{E}_{\rm RHE} - 1.23 \tag{2}$$

Turnover frequency (TOF) was calculated using equation -

$$\Gamma OF = jS/4Fn \tag{3}$$

where S defines the area (cm²) of electrode with active materials, *j* represents the measured current density (A cm⁻²) at desired η , F is the Faraday constant, the parameter 4 in denominator corresponds to number of electrons involved in OER reaction, and *n* represents the number of moles of the catalytic material on the working electrode. TOF was calculated with respect to metals as obtained by SEM-EDS analysis. Number of moles of metals per unit surface area can be obtained according to Equation 4, as n^{Ni} = catalyst loading × % weight of Ni/Atomic weight of Ni (4)

Figure S1: XRD of bulk MoS₂.

Figure S2: XRD of 5% V doped MoS₂-rGO.

Figure S3: (a-f) SEM images, (g) collective element mapping, (h) S mapping, (i) Mo mapping, (j) V mapping, and (k) EDX spectrum of 5% V-doped MoS₂-rGO

Figure S4: Le-bail profile fitting of MoS₂-rGO.

Figure S5: Le-bail profile fitting of 5% MoS₂-rGO.

Figure S6: Le-bail profile fitting of 10% MoS₂-rGO.

Figure S7: HRTEM of (a) undoped and (b) 10% V doped MoS₂-rGO.

	MoS ₂ -rGO	5% V doped MoS ₂ -rGO	10% V doped MoS ₂ -rGO
a, b	3.137139	3.1460	3.151664
c	12.255086	12.6447	12.719102
Alpha, beta	90.0	90.0	90.0
gamma	120.0	120.0	120.0
Vol	104.451(0.170)	108.383	109.413(4.058)
RF-factor	1.58	1.39	1.58
Bragg R-factor:	0.418	0.906	2.48
Rp	35.7	68.7	31.7
Rwp	38.8	48.9	0.148E+04
Re	29.1	30.1	17.3
Chi ²	1.773	2.645	7288.

Table S1: Le-bail refinement parameters for MoS_2 -rGO, 5% and 10% V doped MoS_2 -rGO.

Electrocatalysts	Over potential(mV)	Tafel slope (mv/decade)	Electrolyte	Reference
Ni	370	118	1M NaOH	51
Pt	570	130	8M KOH	52
Ni-CNT	180	N/A	1М КОН	53
MoS ₂ NSs	250	82	0.5 M H ₂ SO ₄	54
MoS ₂ /CNT	199	61	0.5 M H ₂ SO ₄	54
MoS_2 dots on Au	201	82	0.5 M H ₂ SO ₄	55
MoS ₂ dots /nanosheet hybrid on Au		74	0.5 M H ₂ SO ₄	55
Graphene coated Cu NW	252	63	0.5 M H ₂ SO ₄	56
MoS ₂ NFs/rGO		95	0.5 M H ₂ SO ₄	57
MoS ₂ AGs/rGO		102	0.5 M H ₂ SO ₄	57
V-doped MoS2/rGO	153	71	0.5M H ₂ SO ₄	Our work
composite				

TableS2: Comparative study of various catalysts for HER