Supporting Information

Liquid crystalline poly(propylene imine) dendrimer-based iron oxide nanoparticles

Gruzdev M.S., Chervonova U.V., Vorobeva V.E., Ksenofontov A.A., Kolker A.M.

Table SI 1

Compound	Reagents, mg (mmol)	Solvent, V, ml	T, °C	τ, h	Yield, %
D1-K2.10-(Fe ₂ O ₃) _y	1-K2.10-(FeCl ₃) _{1.8} ,	THF, 40	23	4.5	78.7
	200 (0.1)				
	N_2H_2	O ₂			
	96 (30)				
	NaOH,				
	60 (15)				
$D2-K2.10-(Fe_2O_3)_y$	2-K2.10-(FeCl ₃) _{4.7} ,	THF, 50	23	4.5	58.3
	200 (0.049)				
	N_2H_2	O ₂			
	80.53 (27.53)				
	NaOH,				
	55.8 (13.4)				
$D3-K2.10-(Fe_2O_3)_y$	3-K2.10-(FeCl ₃) _{9.2} ,	THF, 55	23	4.5	47.9
	400 (0.048)				
	N_2H_2	O ₂			
	72.53 (17.84)				
	NaOH,				
	50.64 (11.8)				
D4-K2.10-(Fe ₂ O ₃) _y	4-K2.10-(FeCl ₃) _{21.1} ,	THF, 57	23	4.5	38.7
	200 (1.02)				
	N_2H_2	O ₂			
	64.06 (20.02)				
	NaOH,				
	40 (10.1)				

Conditions of DENPs synthesis

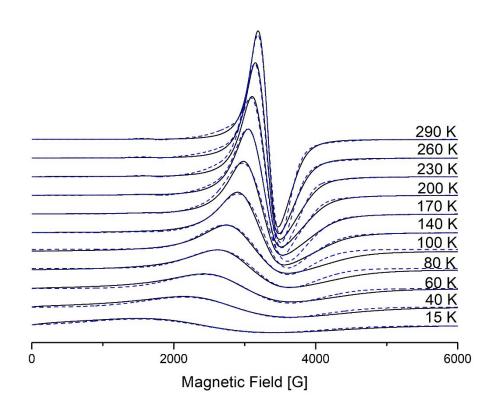


Figure 1 SI. Temperature dependence of EPR spectra for γ -Fe₂O₃ NPs encapsulated into the first generation dendrimer. All spectra were recorded under the same conditions. Dashed lines show the theoretical EPR spectra simulated by EasySpin Matlab.

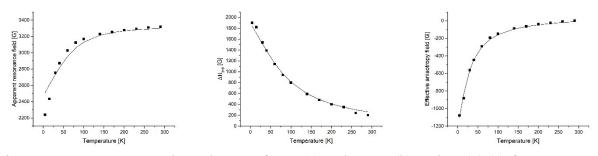


Figure 2 SI. Temperature dependences of H_{res} (a) and ΔH_{p-p} (b) and $H_a(T)$ (c) for I-type Fe(III) centers for γ -Fe₂O₃ NPs in the first generation dendrimer. The solid line (a,b) shows the theoretical dependence simulated by BK theory given by Equations (5) and (7) for (a) and (b), respectively. The solid line (c) shows the theoretical dependence simulated by RS theory.

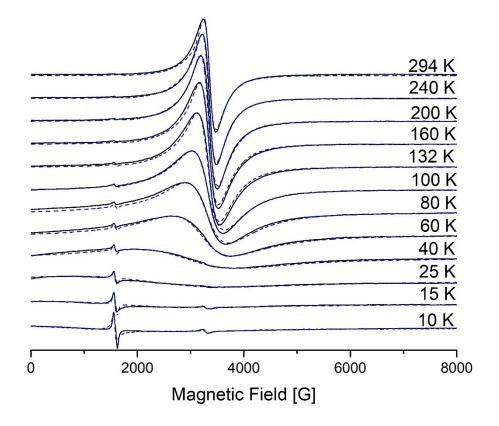


Figure 3 SI. Temperature dependence of EPR spectra for γ -Fe₂O₃ NPs encapsulated into the third generation dendrimer. All spectra were recorded under the same conditions. Dashed lines show the theoretical EPR spectra simulated by EasySpin Matlab.

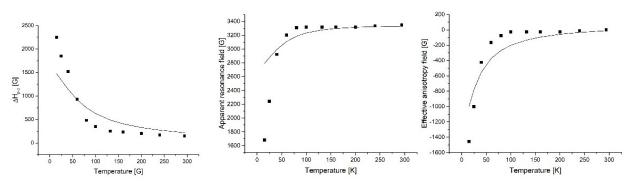


Figure 4 SI. Temperature dependences of H_{res} (a) and ΔH_{p-p} (b) and $H_a(T)$ (c) for I-type Fe(III) centers for γ -Fe₂O₃ NPs in the third generation dendrimer. The solid line (a,b) shows the theoretical dependence simulated by BK theory given by Equations (5) and (7) for (a) and (b), respectively. The solid line (c) shows the theoretical dependence simulated by RS theory.