Supporting Information

Ultra-small dispersed Cu_xO nanoparticles on graphene fiber for miniaturized electrochemical sensor applications

Jinfeng Zeng^a, Xiaoteng Ding^b, Liwei Chen^a, Le Jiao^a, Yuze Wang^a, Windle Christopher^c, Qing Han^{*a} and Liangti Qu^a

^aKey Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of

Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.

^bCollege of Life Sciences, Qingdao University, Qingdao 266071, P.R. China

^cSolar Energy and Advanced Materials Group, Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.

E-mail: qhan@bit.edu.cn;

Experimental Section

Preparation of 0.1 M phosphate buffer (PBS, pH=7.0)

In a typical synthesis, 2.26816 g of KH_2PO_4 was added to a beaker (250 mL), followed by 11.9380 g of Na_2HPO_4 . The mixture was dissolved in about 200 mL of ultrapure water. Finally, the mixed solution was transferred to a volumetric flask (500 mL), diluted with ultrapure water to volume and mixed. The obtained PBS was stored at room temperature.

Preparation of 5 mM potassium ferricyanide solution (K₃Fe[(CN)₆])

Typically, 1.86375 g of KCl powder (0.1 M) and 0.411560 g of $K_3Fe[(CN)_6$ were dissolved in ultrapure water. The mixed solution was transferred to a 250 mL volumetric flask, diluted with ultrapure water to volume, and mixed. The obtained 5 mM $K_3Fe[(CN)_6$ was stored at 4 °C.

Measurement

The cyclic voltammetry (CV), differential pulse voltammetry (DPV) and amperometry were operated on a CHI 760E electrochemical workstation (CH Instruments, China) with a three-electrode system at room temperature, where Cu_xONPs_{60}/GF_{400} acted as the working electrode, Pt plate as the counter electrode, and saturated calomel electrode as the reference electrode. 0.1 M PBS (pH 7.0) as electrolyte in the electrochemical experiments. All of the solutions were deoxygenated by bubbling N₂ for 30 min before electrochemical measurements. CVs and DPVs were recorded in the potential range from -0.6 to 0.6 V at the scan rate of 50 mV s⁻¹. Amperometry was recorded in 10 mL N₂ saturated PBS under magnetic stirring at -0.15 V. Oxygen dissolved in human serum and milk were removed with N₂ for 30 min and 100 μ L of the human serum or milk was injected into 10 mL N₂ saturated PBS by micro syringe. Appropriate H₂O₂ (0.47, 0.60, 5.30, and 94.10 μ M H₂O₂) were then injected into the solution.

Figure S1. (a) SEM image of bare GF, (b) the enlarge view of the rectangle area in (a).

Figure S2. XRD patterns of HNPs and the simulated HKUST-1.

The XRD pattern of HNPs shows similar peaks to that of the simulated HKUST-1, suggesting the copper MOF of HKUST-1 with fourfold symmetry about 1 nm channels was prepared. ¹

Figure S3. EDS spectrums of (a) Cu_xONPs_{60}/GF_{400} and (b) bare GF.

Table S1. The element content (at %) of Cu_xONPs_{30}/GF_{400} , Cu_xONPs_{60}/GF_{400} , Cu_xONPs_{90}/GF_{400} and Cu_xONPs_{120}/GF_{400} determined by energy-dispersive X-ray spectroscopy (EDS).

Sample	С	0	Cu
Cu _x ONPs ₃₀ /GF ₄₀₀	92.92	6.84	0.24
Cu _x ONPs ₆₀ /GF ₄₀₀	86.99	12.27	0.74
Cu _x ONPs ₉₀ /GF ₄₀₀	85.50	12.48	2.03
Cu _x ONPs ₁₂₀ /GF ₄₀₀	84.27	13.06	2.67

Figure S4. (a) SEM image of $HNPs_{30}/GF_{400}$. (b) The enlarged view of the rectangle area in (a). (c) SEM image of $HNPs_{60}/GF_{400}$. (d) The enlarged view of the rectangle area in (c). (e) SEM image of Cu_xONPs_{90}/GF_{400} . (f) The enlarged view of the rectangle area in (e). (g) SEM image of Cu_xONPs_{120}/GF_{400} . (h) The enlarged view of the rectangle area in (g).

Figure S5. (a) SEM image of Cu_xONPs_{60}/GF_{300} , the incomplete decomposition of $HNPs_{60}$ precursors are in red circles, (b) SEM image of Cu_xONPs_{60}/GF_{500} , agglomerations of Cu_xONPs are in the yellow circles.

Figure S6. DPVs of the Cu_xONPs_{60}/GF_{400} in 0.1 M PBS with 0.2 mM H_2O_2 under pH values of 5.15, 6.15, 7.15 and 8.15.

Active material	Linear range (μM)	Limit of detection (µM)	Sensitivity (mAmM ⁻¹ cm ⁻²)	Electrode	Method	Reference
$\{[Cu_2(bep)(ada)_2 \bullet H_2O\}$	0.05-3	0.014	5.56	GCE	l-t	2
Cu@CuO	3-800	210	~	GCE	DPV	3
Cu ₂ ONPs/N-GN	5-3750	0.8	26.67	GCE	l-t	4
Cu ₂ O/GNs	300-7800	20.8	~	GCE	l-t	5
Cu-MOF	0.1-2.75	0.068	78220	GCE	CV	6
Cu ₂ O/rGO	30-12800	21.7	20.7	GCE	l-t	7
CuO-SiNWs	10-13180	1.6	22.27	GCE	l-t	8
Cu ₂ O	~	0.0039	52.3	GCE	l-t	9
CuO Nanosheet	10-20000	10	0.0255	Cu foil	l-t	10
Cu-Ni(OH)₂	5-145	1.5	0.4081	GCE	l-t	11
Cu _x ONPs/GF	0.07-133	0.023	3437.5	graphene fiber	DPV	This work

Table S2. Comparison of various copper-based electrode sensors for H₂O₂ detection

Abbreviation: GCE: glass carbon electrode, I-t: amperometric, DPV: differential pulse voltammogram, CV: cyclic voltammograms.

Figure S7. DPVs response of Cu_xONPs_{60}/GF_{400} electrode in diluted milk with 0.47, 0.60, 5.30, 94.10 μ M H₂O₂, n=3. All potential values are -0.15 V and the pH value of PBS is 7.15. The real samples were diluted to 100 times with 0.1 M PBS solution, pH=7.15.

Figure S8. DPVs response of Cu_xONPs_{60}/GF_{400} electrode in diluted human serum with 0.47, 0.60, 5.30, 94.10 μ M H₂O₂, n=3. All potential values are -0.15 V and the pH value of PBS is 7.15. The real samples were diluted to 100 times with 0.1 M PBS solution, pH=7.15.

References

- 1 S. S. Y. Chui, S. M. F. Lo, J. P. H. Charmant, A. G. Orpen and I. D. Williams, *Science*, 1999, **283**, 1148-1150.
- 2 W. Meng, S. Xu, L. Dai, Y. Li, J. Zhu and L. Wang, *Electrochim. Acta*, 2017, 230, 324-332.
- 3 H. Song, C. Ma, L. You, Z. Cheng, X. Zhang, B. Yin, Y. Ni and K. Zhang, Microchim. Acta,
- 2015, **182**, 1543-1549.
- 4 B. Jiang, X. Wei, F. Wu, K. Wu, L. Chen, G. Yuan, C. Dong and Y. Ye, *Microchim. Acta*, 2014, **181**, 1463-1470.
- 5 M. Liu, R. Liu and W. Chen, *Biosens. Bioelectron.*, 2013, **45**, 206-212.
- 6 C. Zhang, M. Wang, L. Liu, X. Yang and X. Xu, Electrochem. Commun., 2013, 33, 131-134.

- 7 F. Xu, M. Deng, G. Li, S. Chen and L. Wang, *Electrochim. Acta*, 2013, **88**, 59-65.
- 8 J. Huang, Y. Zhu, H. Zhong, X. Yang and C. Li, ACS Appl. Mater. Inter., 2014, 6, 7055-7062.
- 9 S. Li, Y. Zheng, G. W. Qin, Y. Ren, W. Pei and L. Zuo, *Talanta*, 2011, **85**, 1260-1264.
- 10 Y. K. Hsu, Y. C. Chen and Y. G. Lin, *Appl. Surf. Sci.*, 2015, **354**, 85-89.
- 11 A. Gu, G. Wang, J. Gu, X. Zhang and B. Fang, *Electrochim. Acta*, 2010, **55**, 7182-7187.