Electronic Supplementary Information (ESI)

A novel boronic acid-based fluorescent sensor for selectively

recognizing Fe³⁺ ion in real time

Guiqian Fang,^{a, b, c, d} Hao Wang,^{a, b, c, d} Zhancun Bian,^{a, b, c, d} Guo Min,^e Zhongyu Wu^{*a, b, c, d} and Qingqiang Yao^{*a, b, c, d}

a. School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan 250200, Shandong, China

b. Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China

c. Key Laboratory for Biotech-Drugs Ministry of Health, Jinan 250062, Shandong, China

d. Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan 250062, Shandong, China

e. Shandong Province Leather Industrial Research Institute, Jinan 250021, China

*Corresponding authors: E-Mail: wu_med@foxmail.com (Zhongyu Wu), yao_imm@163.com (Qingqiang Yao)

550 ss/Charge, Da

Fig. S1 HRMS spectrum of compound 2

Fig. S2 ¹H NMR spectrum of 3

Fig. S3 ¹³C NMR spectrum of 3

Fig. S4 HRMS spectrum of compound 3

Fig. S5 ¹H NMR spectrum of 4

Fig. S7 HRMS spectrum of compound 4

Fig. S8 UV-vis absorption spectra of sensor 1, 2 and 4 in DMSO/H₂O (3:7, v/v).

Fig. S9 Linear relationship between sensor 4 and Fe^{3+} ion in DMSO/H₂O (3:7, v/v).

Linear Equation: Y=-248.58924X+1175.24893

 $R^2 = 0.98865$

S=2.4858924×10⁶

$$\delta = \sqrt{\frac{\Sigma (F_i - F_0)^2}{N - 1}} = 5.0 \text{ (N=10) K=3}$$

LOD =K × δ /S=6.0 ×10⁻⁶ M

Fig. S10 Relative fluorescence intensity of sensor **4** (1×10^{-4} M) in the presence of 10 equiv. of Fe³⁺ ion in different polar solvents / DMSO (9:1, v/v) solution, at room temperature. From left to right: N, N-dimethylformamide (DMF), dimethylsulfoxide (DMSO), acetone (CP), methyl alcohol (MT), ethyl alcohol (EA), acetonitrile (AN).

Fig. S11 Photograph of 4 (10⁻⁴ M) upon adding 10 equiv. of various ions in DMSO/H₂O (1:9, v/v) which was observed under a UV–lamp (365 nm).

Fig. S12 Fluorescence responses of sensor **4** (1×10⁻⁴ M) to Fe³⁺ ion in DMSO/H₂O (3:7, v/v, phosphate buffer, 0.1 M) at different pH values. Concentrations of Fe³⁺ ion are given in the plot.

Fig. S13 Linear relationship between sensor 4 and ${\rm Fe}^{\rm 3+}$ ion in rabbit plasma

Fig. S14 HRMS spectrum of compound 4-2Fe³⁺ (calculated 689.0658, found 689.3108).

	Sensor	Buffer	Response time	LOD
Gao <i>et al.</i> reported ¹		CH₃CN /HEPES(1:4)	60 min	4.8×10⁻ ⁶ M
Bao <i>et al.</i> reported ²		MeOH/H₂O (3:2)	10min	0.031×10 ⁻⁶ M

Table1 Key information of some reported Fe³⁺ sensors

Sepay <i>et al.</i> reported ³	$rac{1}{2}$	Ethanol/H ₂ O (3:1)	No data	9.8×10 ⁻⁶ M
Nandre <i>et al.</i> reported ⁴	NH NH H H H	MeOH	No data	0.6×10 ⁻⁶ M
Kar <i>et al.</i> reported⁵		CH₃CN/HEPES(1:4)	1 min	4.0×10⁻ ⁶ M
Li <i>et al.</i> reported ⁶		THF/H2O (1:1)	No data	0.38 × 10 ⁻⁶ M
García- Beltrán <i>et al.</i> reported ⁷	HO OH	DMSO/HEPES(1:99)	6 min	51.7 × 10 ⁻⁶ M
Dai <i>et al.</i> reported ⁸		DMSO/HEPES(3:1)	No data	91.1×10 ⁻⁶ M
Yao <i>et al.</i> reported ⁹	O O O H H H O H O H	H ₂ O	No data	No data
Our sensor 4	HO-B HO-B HO-B HO-B HO-B HO-B H	DMSO/ H ₂ O (3:7)	Within a record time (0.5min)	5.8×10 ⁻⁶ M

- 1. G. Y. Gao, W. J. Qu, B. B. Shi, P. Zhang, Q. Lin, H. Yao, W. L. Yang, Y. M. Zhang and T. B. Wei, Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, 2014, **121**, 514-519.
- 2. X. Bao, J. Shi, X. Nie, B. Zhou, X. Wang, L. Zhang, H. Liao and T. Pang, *Bioorganic & Medicinal*

Chemistry, 2014, **22**, 4826-4835.

- 3. N. Sepay, S. Mallik, P. C. Saha and A. K. Mallik, *New Journal of Chemistry*, 2018, **42**, 15270-15276.
- 4. J. Nandre, S. Patil, P. Patil, S. Sahoo, C. Redshaw, P. Mahulikar and U. Patil, *Journal of Fluorescence*, 2014, **24**, 1563-1570.
- 5. C. Kar, S. Samanta, S. Mukherjee, B. K. Datta, A. Ramesh and G. Das, *New Journal of Chemistry*, 2014, **38**, 2660-2669.
- 6. Z. Li, Y. Zhou, K. Yin, Z. Yu, Y. Li and J. Ren, *Dyes & spigments*, 2014, **105**, 7-11.
- O. García-Beltrán, B. K. Cassels, C. Pérez, N. Mena, M. T. Núñez, N. P. Martínez, P. Pavez and M. E. Aliaga, Sensors, 2014, 14, 1358-1371.
- 8. Y. Dai, K. Xu, C. Wang, X. Liu and P. Wang, *Supramolecular Chemistry*, 2017, **29**, 315-322.
- 9. J. Yao, W. Dou, W. Qin and W. Liu, *Inorganic Chemistry Communications*, 2009, **12**, 116-118.