Application of pea-like yolk-shell structured Fe₃O₄@TiO₂ nanosheets for photocatalytic and photo-Fenton oxidation of bisphenol-A

Xingxing Li, Mingcan Cui, Yonghyeon Lee, Jongbok Choi, Jeehyeong Khim*

School of Civil, Environmental, and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea

E-mail: hyeong@korea.ac.kr

List of supporting information

1. Schematic diagram of experimental set up

2. Wave length of the UV lamp

3. TEM images of Fe₃O₄@SiO₂@TiO₂ with different ammonia content

4.TEM images of pea-like Fe₃O₄@SiO₂@TiO₂ with different diameter of mixing paddle

5.Schematic diagram of formation mechanism of pea-like Fe₃O₄@SiO₂@ TiO₂

6.TEM images of PLYS-Fe₃O₄@TiO₂ spheres with different concentration of NaOH

7.TEM and SEM images of PLYS-Fe₃O₄@TiO₂

8. EDS of PLYS-Fe₃O₄@TiO₂

9. Iron leaching test

10. TOC removal efficiency calculation

11. Comparing reaction rate constants in different systems and conditions

1. Schematic diagram of experimental set

Fig. S1

2. Wave length of the UV lamp

Fig. S2

3. TEM images of Fe₃O₄@SiO₂@TiO₂ with different ammonia content

Fig. S3

4. TEM images of pea-like Fe₃O₄@SiO₂@TiO₂ with different diameter of mixing paddle

Fig.S4

5. Formation mechanism of pea-like Fe₃O₄@SiO₂@ TiO₂

The formation of a polymerized TiO_2 via sol-gel process including hydrolysis and condensation process of TIPO is mainly controlled by the concentration of ammonia while maintaining other parameters [1,2]. As shown is **Fig.S5**, there are four models

observed for nucleation and growth of TiO_2 on the surface of $Fe_3O_4@SiO_2$ spheres under different ammonia concentration.

In the **Model 1**, due to the concentration of ammonia is very low, the hydrolysis and condensation rate of TIPO is so slow that the heterogeneous nucleation is difficult to proceed. Therefore, there is no TiO₂ nanoparticles on the surface of Fe₃O₄@SiO₂ spheres [3]. Increasing the concentration of ammonia slightly, which can promote the hydrolysis and condensation of TIPO, thus the concentration of titanium oligomers increases. When the concentration of titanium oligomers is more than the critical concentration of heterogeneous nucleation, the heterogeneous nucleation of TiO₂ shell produces on the Fe₃O₄@SiO₂ spheres surface (**Model 2**). With the increase of concentration of titanium oligomers which is higher than the supersaturated concentration, the small TiO₂ nuclei can be formed both on the surface of TiO₂ shell and the solution system (**Model 3**). Furthermore, when the initial contents of ammonia are too high, a continual cascading of TiO₂ nuclei in addition to growth occurs *via* diffusion and polymerization of titanium oligomers to the TiO₂ nuclei. Meanwhile, under the mechanical force-driven [4], the pea-like structured Fe₃O₄@SiO₂@TiO₂ particles are formed (**Model 4**).

Fig.S5

6. TEM images of PLYS-Fe₃O₄@TiO₂ spheres with different concentration of NaOH

Fig.S6

7. TEM and SEM images of PLYS-Fe₃O₄@TiO₂

Fig.S7

8. EDS of PLYS-Fe₃O₄@TiO₂

The integrated energy dispersive X-ray spectroscopy (EDS) shows that the content of Ti, Fe, O is 34.35%, 13.17% and 40.61%, respectively.

Fig. S8

9. Iron leaching test

The iron leaching from the PLYS-Fe₃O₄@TiO₂ into the solution were measured using an inductively coupled plasma atomic emission spectrometer (ICP-AES; Perkin Elmer 5300DV).

Fig.S9

10.TOC removal efficiency calculation

The removal percentage of TOC was calculated by using Eq. S1

 $TOC \text{ removal}=(1-\frac{TOCt}{TOC0}) \times 100\%$ (1)

where TOC_0 and TOC_t are the TOC values at initial and time of the photocatalytic photo-Fenton process, respectively. As shown in **Fig.S10**, 65.2 % TOC was removed at pH 7 in 2h.

Fig.S10

Table S1

Reference

- [1] Livage, J, Henry, M, Sanchez, C. Prog, Solid State Chem 18 (1988) 259-341.
- [2] Barringer. E, Bowen, H, Langmuir 1 (1985) 414-420.
- [3] W. Li, J. Yang, Z. Wu, J. Wang, B. Li, S. Feng, Y. Deng, F. Zhang, D. Zhao, A versatile kinetics-controlled coating method to construct uniform porous TiO₂ shells for multifunctional core-shell structures, J Am Chem Soc, 134 (2012) 11864-11867.
- [4] Y. Tang, Y. Zhang, J. Deng, J. Wei, H. Le Tam, B.K. Chandran, Z. Dong, Z. Chen, X. Chen, Mechanical force-driven growth of elongated bending TiO₂ -based nanotubular materials for ultrafast rechargeable lithium ion batteries, Adv Mater, 26 (2014) 6111-6118.

- [5] S. Ahmad Mokhtari, M. Farzadkia, A. Esrafili, R.R. Kalantari, A.J. Jafari, M. Krmani, M. Gholami, Bisphenol A removal from aqueous solutions using novel UV/Persulfate/H₂O₂/Cu system: optimization and modelling with central composite design and response surface methodology, J. Env. Heal. Sci. Eng. (2016) 14-19
- [6] M. Saquib, M. Abu Tariq, M.M. Haque, M. Muneer, Photocatalytic degradation of disperse blue 1 using UV/TiO₂/H₂O₂ process, J. Env. Mana. (2008) 88, 300-306
- [7] S. Kang, J.Y. Do, S.W. Jo, K.M. Kim, K.M. Jeong, S.M. Park, M. Kang, Efficient removal of bisphenol A by an advanced photocatalytic oxidation-type UV/H₂O₂/Fe-loaded TiO₂ system. Bulletin of the Korean Chemical Society, (2006) 36, 2006-2014

Figure List of supporting information

Fig.S1 Schematic diagram of experimental set up

Fig.S2 Wave length of the UV lamp

Fig.S3 TEM images of Fe₃O₄@SiO₂@TiO₂ with different ammonia content

Fig.S4 TEM images of pea-like Fe₃O₄@SiO₂@TiO₂ with different diameter of mixing paddle

Fig.S5 Schematic diagram of formation mechanism of pea-like Fe₃O₄@SiO₂@TiO₂

Fig.S6 TEM images of Fe₃O₄@tatiate spheres with different concentration of NaOH

Fig.S7 TEM and SEM images of PLYS- Fe₃O₄@TiO₂

Fig.S8 EDS of PLYS- Fe₃O₄@TiO₂

Fig.S9 Iron leaching test

Fig.S10 TOC removal efficiency calculation

Table List of supporting information

Table S1 Comparing reaction rate constants in different systems and conditions

Fig.S2 Wave length of the UV lamp

Fig.S3 TEM images of Fe $_3O_4@SiO_2@TiO_2$ with different ammonia content

Fig.S4 TEM images of pea-like $Fe_3O_4@SiO_2@TiO_2$ with different diameter of mixing paddle

Fig.S5 Schematic diagram of formation mechanism of pea-like Fe₃O₄@SiO₂@TiO₂

Fig.S6 TEM images of PLYS-Fe $_3O_4$ @TiO $_2$ spheres with different concentration of

NaOH

Fig.S7 TEM and SEM images of PLYS-Fe₃O₄@TiO₂

Fig.S8 EDS of PLYS-Fe₃O₄@TiO₂

Fig.S9 Iron leaching test

Fig.S10 TOC removal efficiency calculation

System	Condition and	kinetic constant (min ⁻¹)	Ref.
Only UV	Intensity=800 μWcm ⁻² , Temp.=25°C, BPA=0.088 mM	ND	
Only PLYS-Fe ₃ O ₄ @TiO ₂	PLYS-Fe ₃ O ₄ @TiO ₂ =1.5 g L ⁻¹ , BPA=0.088 mM, Temp.=25°C,	ND	
Only H ₂ O ₂	H ₂ O ₂ =18.9 mM, BPA=0.088 mM, Temp.=25°C	1.5×10 ⁻³	
UV/H ₂ O ₂	H ₂ O ₂ =18.9 mM, BPA=0.088 mM, Temp.=25°C, Intensity=800 μWcm ⁻²	3.0×10 ⁻³	
UV/ PLYS-Fe ₃ O ₄ @TiO ₂	PLYS-Fe ₃ O ₄ @TiO ₂ =1.5 g L ⁻¹ , BPA=0.088 mM, Temp.=25°C, Intensity=800 μ Wcm ⁻²	3.4×10 ⁻³	
PLYS-Fe ₃ O ₄ @TiO ₂ /H ₂ O ₂	PLYS-Fe ₃ O ₄ @TiO ₂ =1.5 g L ⁻¹ , BPA=0.088 mM, Temp.=25°C, H ₂ O ₂ =18.9 mM	2.7×10 ⁻³	This study
UV/TiO ₂ (P25)/H ₂ O ₂	Intensity=800 μWcm ⁻² , TiO ₂ (P25)=1.5 g L ⁻¹ , BPA=0.088 mM, Temp.=25°C, H ₂ O ₂ =18.9 mM	11.5×10 ⁻³	
UV/Fe ₃ O ₄ /H ₂ O ₂	Intensity=800 μWcm ⁻² , Fe ₃ O ₄ =1.5 g L ⁻¹ , BPA=0.088 mM, Temp.=25°C, H ₂ O ₂ =18.9 mM	2.9×10 ⁻³	
UV/PLYS-Fe ₃ O ₄ @TiO ₂ /H ₂ O ₂	Intensity=800 μ Wcm ⁻² , PLYS-Fe ₃ O ₄ @TiO ₂ =1.5 g L ⁻¹ , H ₂ O ₂ =18.9 mM, BPA=0.088 mM, Temp.=25°C	24.2×10 ⁻³	
UV/S ₂ O ₈ ²⁻ /H ₂ O ₂ /Cu	UV=Mercury lamp (diameter	43×10 ⁻³	[5]
UV/H ₂ O ₂	$8 \times 10^{10} \text{ cm}$; power=12 W;	6×10 ⁻³	

 Table S1 Comparing reaction rate constants in different systems and conditions

UV/Cu	BPA=0.099 mM; S ₂ O ₈ ²⁻ =0.339	3.4×10 ⁻³	
$UV/S_2O_2/H_2O_2$	mM; H ₂ O ₂ =0.294 mM;	18×10-3	
UV/H2O2/Cu	Cu+=0.273 mM	9.6×10-3	
$UV/S_2O_8^{2-}/Cu$		11×10 ⁻³	
UV/Fe-TiO ₂ (3% Fe)/H ₂ O ₂	UV=Mercury lamp(diameter	15.4×10-3	[6]
	2.0×length 15 cm); Intensity=18		
	W cm ⁻² ; BPA=0.044 mM;		
	$H_2O_2=1$ mL(2L volume);		
	catalytic loading=1 g L ⁻¹		
			[7]
UV/TiO ₂ (P25)/H ₂ O ₂	UV=254 nm(1.25 mW cm ⁻²);	5.7×10 ⁻³	
UV/TiO ₂	dye=0.25 mM; H ₂ O ₂ =0.1	3.1×10-3	
	mL(250 mL); TiO ₂ =1g L ⁻¹		