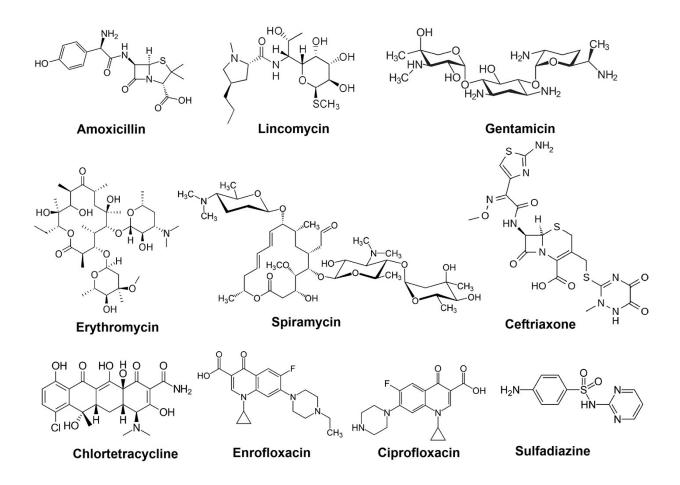
Electronic Supplementary Information (ESI)

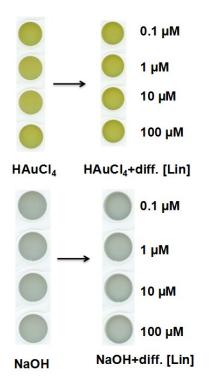
Simple, rapid, sensitive, selective and label-free lincomycin detection by using HAuCl₄ and NaOH

Yumin Leng*a, Fang Hu^c, Chunhua Ma^a, Chenxi Du^a, Linfeng Ma^a, Jiao Xu^a, Qiyuan Lin^a, Zhipei Sang*^b and Zhiwen Lu*a

^aCollege of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, China.


^bCollege of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.

^cFaculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China


Corresponding Author

*E-mail: yumin_leng@126.com, sangzhipei@126.com, lzw@nynu.edu.cn

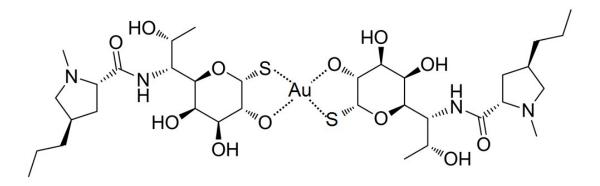

Supplementary Figures

Fig. S1. Structures of 10 common antibiotics (amoxicillin, lincomycin, gentamycin, erythromycin, spiramycin, ceftriaxone, chlortetracycline, enrofloxacin, ciprofloxacin, and sulfadiazine).

Fig. S2. Color images of the HAuCl₄ and NaOH solution exposure to different concentrations of Lin, respectively.

Fig. S3. Schematic representation of the sensing procedure for colorimetric detection of Lin based on chelation interaction between Au and Lin.

Supplementary Table

Table S1. The equation and parameters for limit of detection (LOD) calculation.

$Y = A + S \times X$						
Parameter	А	S	R	SD	N	Р
Lin in double distilled water	55.65	3.88	0.998	1.26	6	<0.0001
Lin in real sample	6.99	11.07	0.997	3.46	5	<0.0001

A = Y-intercept, S = slope, R = correlation, SD = standard deviation, N = number of data points, P = probability value.

The limit of detection (LOD) could be obtained by the above equation and parameters.

 $LOD_{water} = 3 \times SD/S = 3 \times 1.26/3.88 \ \mu M = 0.97 \ \mu M$

 $LOD_{sample} = 3 \times SD/S = 3 \times 3.46/11.07 \ \mu M = 0.94 \ \mu M$