Supplementary information

The Synthesis of a ^{99m}Tc-Labeled Tetravalent Targeting Probe upon Isonitrile Coordination to ^{99m}Tc^I for Enhanced Target Uptake in Saturable Systems

Yuki Mizuno^{†, ‡}, Tomoya Uehara[†], Chun-wei Jen[†], Hiromichi Akizawa^{‡*}, and Yasushi Arano[†]

[†] Laboratory of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Sciences,

Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan

[‡] Laboratory of Physical Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan

• HPLC Methods

- Synthesis scheme of the compounds 8a, 8b, 16 (Scheme S1)
- Stability of M-[L_{β} ']₃ (M = ^{185/187}Re and ^{99m}Tc) at pH 6.0 (Figure S1)
- In vitro stability of 99m Tc-[L_G]₄ (Table S1, Figure S2)
- Competitive inhibition curves of the tested compounds (Figure S3)
- MS, ¹H-NMR, ¹³C-NMR, IR, and/or purity check of key compounds (Figure S4 ~ Figure S14)

HPLC methods. A L-7100 (Hitachi Ltd, Tokyo, Japan) equipped with a L-7405 UV detector (monitoring at 254 nm or 220 nm) and a NaI(TI) radio-detector (Gabi star, Raytest Strubenhardt, Germany) were used for high performance liquid chromatography (HPLC).

Preparative RP-HPLC was performed with a Cadenza 5CD-C18 (20 × 150 mm, Imtakt Co., Kyoto, Japan) connected to a Cadenza 5CD-C18 guard cartridge (10 × 8 mm, Imtakt Co.) at a flow rate of 5 mL/min with a mobile phase starting from 45% solvent A (0.1% TFA/water) and 55% solvent B (0.1% TFA/MeOH) to 40% solvent A and 60% solvent B at 45 min (system 1) or starting from 50% solvent A (0.1% TFA/water) and 50% solvent B (0.1%TFA/MeOH) to 40% solvent A and 60% solvent B (0.1%TFA/water) and 50% solvent B (0.1%TFA/MeOH) to 40% solvent A and 60% solvent B (0.1%TFA/Water) and 50% solvent B (0.1%TFA/MeOH) to 25% solvent A and 75% solvent A (0.1%TFA/water) and 50% solvent B (0.1%TFA/MeOH) to 25% solvent A and 75% solvent B at 40 min (system 3) or starting form 90% solvent A (Water) and 10% solvent B (MeCN) to 82.5% solvent A and 17.5% solvent B at 30 min to 100% solvent B at 35 min (system 4) or with a Cadenza CW-C18 (10 × 150 mm, Imtakt Co.) at a flow rate of 3 mL/min with an isocratic mobile phase of 56.5% solvent A (0.1% TFA/water) and 43.5% solvent B (0.1% TFA/MeOH) (0-30 min), followed by linear gradient over 5 min to 100% solvent B (system 5).

Analytical RP-HPLC was performed with a Cadenza 5CD-C18 (4.6×150 mm, Imtakt Co.) at a flow rate of 1 mL/min with a mobile phase starting from 50% solvent A (0.1% TFA/water) and 50% solvent B (0.1% TFA/MeOH) to 40% solvent A and 60% solvent B at 25 min to 100% solvent B at 27 min (system 6) or starting from 50% solvent A (0.1% TFA/water) and 50% solvent B (0.1%

TFA/MeOH) to 25% solvent A and 75% solvent B at 25 min to 100% solvent B at 27 min (system 7) or with an isocratic mobile phase of 70% solvent A (0.1% TFA/water) and 30% solvent B (0.1% TFA/MeOH) (0-5 min), followed by linear gradient over 10 min to 100% solvent B (system 8) or with a Cadenza CW-C18 (4.6 × 150 mm, Imtakt Co.) at a flow rate of 0.7 mL/min with a mobile phase starting from 57% solvent A (0.1% TFA/water) and 43% solvent B (0.1% TFA/MeOH) to 52% solvent A and 48% solvent B at 20 min to 100% solvent B at 25 min, followed by an isocratic mobile phase of 100% solvent B for 2 min (system 9) or starting from 90% solvent A (Water) and 10% solvent B (MeCN) to 75% solvent A and 25% solvent B at 20 min (system 10) or starting from 59% solvent A (0.1% TFA/water) and 41% solvent B (0.1% TFA/MeOH) to 54% solvent A and 46% solvent B at 20 min to 100% solvent B at 25 min, followed by an isocratic mobile phase of 100% solvent B at 25 min, followed by an isocratic from 59% solvent A (0.1% TFA/water) and 41% solvent B (0.1% TFA/MeOH) to 54% solvent A and 46% solvent B at 20 min to 100% solvent B at 25 min, followed by an isocratic mobile phase 100 min to 100% solvent B at 25 min, followed by an isocratic mobile phase 100% solvent B at 25 min, followed by an isocratic mobile phase 100% solvent B at 20 min to 100% solvent B at 20 min (system 10) or starting from 59% solvent A (0.1% TFA/water) and 41% solvent B (0.1% TFA/MeOH) to 54% solvent A and 46% solvent B at 20 min to 100% solvent B at 25 min, followed by an isocratic mobile phase of 100% solvent B for 2 min (system 11).

"Reagents and conditions: (a) benzyl amine, EDC·HCl, CHCl₃, 76%; (b) TFA; (c) compound **3**, NaHCO₃, DMF, 72%; (d) formic acid, acetic anhydride, 39%; (e) 2,3,5,6-tetrafluorophenol, EDC·HCl, CHCl₃, 83%; (f) Burgess reagent, CH₂Cl₂, 60%; (g) compound **3**, NaHCO₃, DMF, 63%; (h) NaHCO₃, DMF, 52%.

Figure S1. HPLC analyses (system 6) of M- $[L_{\beta}']_3$ (M = ^{185/187}Re and ^{99m}Tc) after heating at 100°C for 30 min at pH 6.0. M- $[L_{\beta}']_3$ remained intact after the heating.

Table S1. In vitro stability of 99m Tc-[L_G]₄ in 10 mM histidine solution and murine plasma^{*a*}

time (h)	percent of intact	
	10 mM Histidine	Murine Plasma
1	98.5 ± 0.2	99.1 ± 0.1
6	98.1 ± 0.2	98.7 ± 0.4

^{*a*}Results are expressed as mean \pm SD of three experiments. Percent of intact was determined by TLC analysis.

Figure S2. In vitro stability of 99m Tc-[L_G]₄ in histidine solution and murine plasma. HPLC analysis after 6 h incubation (a) in 10 mM histidine solution and (b) in murine plasma. Plasma proteins were precipitated with EtOH prior to HPLC analysis.

Figure S3. In vitro inhibition curves of ¹²⁵I-c(RGDyV) bound to U87MG glioma cells by L_G , Re-[L_G]₃, Re-[L_G]₄, and c(RGDyV) at 37 °C.

Figure S4a. ESI-MS spectrum of L_{β} ' (8a).

Figure S4b. ¹H NMR spectrum of L_{β} ' (8a) in DMSO- d_6 .

Figure S4c. ¹³C NMR spectrum of L_{β} ' (8a) in DMSO- d_6 .

Figure S4d. IR spectrum (ATR) of L_{β} ' (8a).

Figure S5a. ESI-MS spectrum of $[^{185/187}Re(CO)_3(L_{\beta})_3]^+$ (9).

Figure S5b. ¹H NMR spectrum of $[^{185/187}Re(CO)_3(L_{\beta}^{'})_3]^+$ (9) in DMSO-*d*₆.

Figure S5c. ¹³C NMR of $[^{185/187}Re(CO)_3(L_{\beta}')_3]^+$ (9) in DMSO-*d*₆.

Figure S5d. IR spectrum (ATR) of $[^{185/187}Re(CO)_3(L_{\beta}')_3]^+$ (9).

Figure S6a. ESI-MS spectrum of $[^{185/187}Re(CO)_3(CN)(L_{\beta}')_2]$ (13).

Figure S6b. ¹H NMR spectrum of $[^{185/187}Re(CO)_3(CN)(L_{\beta}')_2]$ (13) in DMSO-*d*₆.

Figure S7a. ESI-MS spectrum of $[^{185/187}Re(CO)_3(CN)_2(L_{\beta})]^-$ (14).

Figure S8a. ESI-MS spectrum of the eliminated ligand (12).

Figure S8b. ¹H NMR spectrum of the eliminated ligand (12) in DMSO-*d*₆.

Figure S8c. IR spectrum (ATR) of the eliminated ligand (12).

Figure S9a. ESI-MS spectrum of L_G' (8b).

Figure S9b. ¹H NMR spectrum of L_G' (8b) in DMSO-*d*₆.

Figure S9c. IR spectrum (ATR) of L_G ' (8b).

Figure S10a. ESI-MS spectrum of $[^{185/187}Re(CO)_3(L_G^{'})_3]^+$ (10).

Figure S10b. ¹H NMR spectrum of $[^{185/187}Re(CO)_3(L_G')_3]^+$ (10) in DMSO- d_6 .

Figure S10c. IR spectrum (ATR) of $[^{185/187}Re(CO)_3(L_G')_3]^+$ (10).

Figure S11a. ESI-MS spectrum of $[^{185/187}Re(CO)_2(L_G')_4]^+$ (11).

Figure S11b. IR spectrum (ATR) of $[^{185/187}Re(CO)_2(L_G')_4]^+$ (11).

Figure S12a. ESI-MS spectrum of L_G (16).

Figure S12b. HPLC chromatogram of L_G monitored at 220 nm using system 10, which showed >95% purity.

Figure S13a. ESI-MS spectrum of $[^{185/187}Re(CO)_3(L_G)_3]^+$ (17).

Figure S13b. HPLC chromatogram of $[^{185/187}\text{Re}(\text{CO})_3(\text{L}_G)_3]^+$ monitored at 220 nm using system 7, which showed >95% purity.

Figure S14a. ESI-MS spectrum of $[^{185/187}Re(CO)_2(L_G)_4]^+$ (18).

Figure S14b. HPLC chromatogram of $[^{185/187}\text{Re}(\text{CO})_2(\text{L}_G)_4]^+$ monitored at 220 nm using system 7, which showed >95% purity.