Supporting Information

Percolation analysis of the electrical conductive network in a polymer

nanocomposites by nanorod functionalization

Ruibin Ma^{1,2}, Guangyao Mu^{1,2}, Huan Zhang,³ Jun Liu, ^{1,2} Yangyang Gao^{1,2*}, Xiuying Zhao^{1,2*},

Liqun Zhang^{1, 2*}

 ¹Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, 10029, China
² State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, 100029, China
³Aerospace Research Institute of Materials and Processing Technology, Beijing, 100076, China

^{*} Corresponding author: <u>gaoyy@mail.buct.edu.cn</u> or <u>zhaoxy@mail.buct.edu.cn</u> or <u>zhanglq@mail.buct.edu.cn</u>

Fig. S1 The distribution of A and B beads in each nanorod (NR) at different NR functionalization degree λ_A . The red spheres denote the A beads and the blue spheres denote the B beads.

Fig. S2(a) The coordination number and (b) snapshots for different nanorods (NR) functionalization degree λ_A where the polymer chains are neglected for clarity and the red spheres denote the NRs. ($T^* = 1.0, \varphi = 4.0\%$)

Fig. S3(a) The local order structure $\langle P_2(\mathbf{r}) \rangle$ of the nanorod (NR) aggregation and (b) the probability distribution (P_N) of the nearest neighbor NRs surrounding one NR at a separation closer than 1.5σ (Nnum) for different NR functionalization degree λ_A . ($T^*=1.0, \varphi=4.0\%, \dot{\gamma}=0.0$)

Fig. S4 RDF of nanorods for different interaction \mathcal{E}_{pA} between polymer and A beads. ($T^*=1.0$, $\varphi =4.0\%$)

Fig. S5(a) The local order structure $\langle P_2(\mathbf{r}) \rangle$ of the nanorod (NR) aggregation and (b) the probability distribution (P_N) of the nearest neighbor NRs surrounding one NR at a separation closer than 1.5σ (Nnum) for different interaction ε_{pA} between polymer and A beads. ($T^*=1.0$, $\varphi=4.0\%$, $\dot{\gamma}=0.0$)

Fig. S6 Change of the main cluster size C_n as a function of the nanorod (NR) volume fraction φ for different interaction \mathcal{E}_{pA} between polymer and A beads. ($T^* = 1.0, \beta = 0.0$)

Fig. S7 RDF of nanorods (NR) for different NR functionalization degree λ_A . ($T^* = 1.0, \varphi = 4.0\%$, $\dot{\gamma} = 0.1$)

Fig. S8(a) The local order structure $\langle P_2(\mathbf{r}) \rangle$ of the nanorod (NR) aggregation and (b) the probability distribution (P_N) of the nearest neighbor NRs surrounding one NR at a separation closer than 1.5σ (Nnum) for different NR functionalization degree (λ_A).($T^*=1.0$, $\varphi=4.0\%$, $\dot{\gamma}=0.1$)

Fig. S9 The orientation degree $\langle P_2 \rangle$ of the nanorods (NR) with respect to the NR functionalization degree (λ_A). ($T^* = 1.0, \varphi = 4.0\%, \dot{\gamma} = 0.1$)

Fig. S10 Change of the main cluster size C_n as a function of the nanorod (NR) volume fraction φ for different NR functionalization degree (λ_A). ($T^* = 1.0, \dot{\gamma} = 0.1$)

Fig. 11 The percolation threshold φ_c with respect to the shear rate λ^{e} . ($T^*=1.0, \lambda_A=0.1$)

Fig. S12 Change of the main cluster size C_n as a function of the nanorod volume fraction φ for different shear rate $\dot{(\gamma)}$. $(T^*=1.0, \lambda_A=0.1)$

Fig. S13 the NR orientation $\langle P_2 \rangle$ with respect to the shear rate $\dot{\gamma}$. ($T^*=1.0, \varphi = 4.0\%, \lambda_A = 0.1$)

Fig. S14 RDF of nanorods with respect to the shear rate $\dot{\gamma}$. ($T^* = 1.0, \varphi = 4.0\%$, $\lambda_A = 0.1$)

Interaction types	$\mathcal{E}_{ij}^{a}(\mathcal{E})$	$r_{cutoff}^{b}(\sigma)$
PB ^c -PB ^c	1.0	$2 \times 2^{1/6}$
PB ^c -NR ^u	1.0	2.5
PB ^c -NR ^f	1.0-5.0	2.5
NR ^u -NR ^u	1.0	2.5
NR ^u –NR ^f	1.0	2.5
NR ^f –NR ^f	1.0	2.5

Table S1 Nonbonded interaction parameters used in this work.

 $^{a}\mathcal{E}_{ij}$ the energy parameters between interacting sites i and j.

^b Γ_{cutoff} is the cut-off distance.

^cPB is the bead on polymer chain.

"NR is the unfunctionalized bead on nanorod.

^fNR is the functionalized bead on nanorod.