Phosphorus removal enhancement and mechanisms by Zn-layered double hydroxides (Zn-LDHs) modified zeolites substrates in constructed rapid infiltration system

Xiangling Zhang*, Jingtian Gao, Yu Lei, Zhouying Xu, Shibin Xia*, Yinghe Jiang, Jing

Cheng

School of Civil Engineering and Architecture, Wuhan University of Technology,

122, Luoshi Road, Hongshan District, Wuhan, China, 430070

Tel, +0086 013808670309

E-mail, ZXLCL@126.com

It includes 11 pages, 7 Figures and 3 Tables

Figure S1. The EDX images of ZnAl-LDHs (2:1), ZnAl-LDHs (3:1), ZnFe-LDHs (2:1), ZnFe-LDHs (3:1) modified and original zeolites before (a, b, c, d, e) and after (f, g, h, i, j) purification experiments.

Figure S2. XRD patterns of ZnAl-LDHs-modified (2:1) (a), ZnAl-LDHs-modified (3:1) (b),

ZnFe-LDHs-modified (2:1) (c) and ZnFe-LDHs-modified (3:1) (d) samples

Figure S3. The microbial action for TP, TDP and SRP removal with Zn-LDHs-modified and

original zeolites

Figure S4. Pseudo-first-order (a) and pseudo-second-order (b) kinetic for adsorption of phosphate for Zn-LDHs-modified and original zeolites

Figure S5. The main mechanisms for phosphorus removal in CRIS

Figure S6. The Cl⁻ concentration in filtrates (mg/L)

Figure S7. The adsorption and ion exchange mechanisms of Zn-LDHs coating

		Before purification experiments							
Elements _		1A	2A	3A	4A	5A			
0	Wt%	61.05	61.58	60.71	59.94	63.58			
0	At%	73.22	73.59	74.05	73.30	75.36			
Si	Wt%	29.50	24.75	25.84	30.59	26.14			
	At%	20.15	16.85	17.95	21.31	17.65			
	Wt%	9.04	13.13	8.40	5.12	9.65			
Al	At%	6.43	9.30	6.07	3.71	6.78			
Fe	Wt%	-	-	3.28	2.21	-			
	At%	-	-	1.15	0.77	-			
Zn	Wt%	0.11	0.14	0.77	1.11	-			
	At%	0.03	0.04	0.23	0.33	-			
Р	Wt%	-	-	-	-	-			
	At%	-	-	-	-	-			
~1	Wt%	0.30	0.39	1.01	2.21	-			
CI	At%	0.16	0.21	0.56	0.58	-			
		After purification experiments							
Elem	ents _	1A	2A	3A	4A	5A			
	Wt%	59.60	59.46	61.40	63.06	63.27			
0	At%	72.05	72.17	73.13	74.87	75.06			
C :	Wt%	31.08	23.06	24.31	27.44	32.39			
51	At%	21.40	15.95	16.49	18.56	21.89			
A 1	Wt%	5.96	12.48	9.54	4.60	4.34			
Al	At%	4.27	8.98	6.73	3.24	3.05			
F	Wt%	-	-	2.40	2.23	-			
Fe	At%	-	-	0.82	0.76	-			
Zn	Wt%	1.52	3.58	0.46	0.90	-			
	At%	0.45	1.06	0.29	0.26	-			
D	Wt%	0.08	0.05	0.28	0.08	0.01			
Р	At%	0.05	0.05	0.17	0.08	0.01			
	337.0/	0.04	0.14	0.21	0.10				
	Wt%	0.04	0.14	0.21	0.10	-			

Table S1. The relative content of elements of all kinds of Zn-LDHs-modified and original

Adsorbents	C ₀ (mg/L)	Intra-particle diffusion model								
		$\frac{K_{dl}}{(\text{mg/h}^{1/2}\text{g})}$	C_{I}	$(R_{I})^{2}$	$\frac{K_{d2}}{(\text{mg/h}^{1/2}\text{g})}$	C_2	$(R_2)^2$	$\frac{K_{d3}}{(\text{mg/h}^{1/2}\text{g})}$	C_3	$(R_3)^2$
1A		6.9068	0	1	6.9068	5.8473	0.9707	-34.458	131.01	1
2A		27.46	0	1	4.3998	16.140	0.924	-32.709	136.83	1
3A	4	15.652	0	1	6.1059	6.6904	0.9832	-13.727	74.35	1
4A		12.357	0	1	6.0798	4.3921	0.9849	-13.727	72.602	1
5A		14.554	0	1	3.2492	6.9957	0.9551	-32.813	137.92	1

Table S2. Intra-particle diffusion model constants and correlation coefficients for adsorption

of phosphate on LDHs-modified and original zeolites

Samples	Effective	High-quality	OTUs	Chao 1	ACE	Shannon	Simpson	
	sequences	sequences						
1A	30327	26013	788	545.0	676.16	5.97	0.935	
2A	27446	24978	949	662.0	662.00	7.07	0.978	
3A	42471	39095	961	662.0	924.73	6.78	0.973	
4A	42069	39362	1033	711.0	978.07	6.99	0.979	
5A	41436	35472	1407	1179.0	1427.65	7.62	0.969	
Total	183749	164920	-	-	-	-	-	

Table S3. The corresponding sequences, OTUs, Chao 1 and Shannon indexes in lab-scale

simulated CRIS