Supporting Information

Distinctly plasmon resonance enhanced microwave absorption of strawberry-like Co/C/Fe/C core-shell hierarchical flowers via engineering the diameter and interparticle spacing of Fe/C nanoparticles

Zidong He, [†] Minmin Liu, [†] Lin Liu, [†] Guoxiu Tong, *[†] Wenhua Wu, [†] and Xiaojuan Wang *[†]

[†] College of Chemistry and Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China.

* Corresponding Author. E-mail: tonggx@zjnu.cn Tel.: +86-579-82282269; Fax: +86-579-82282269.

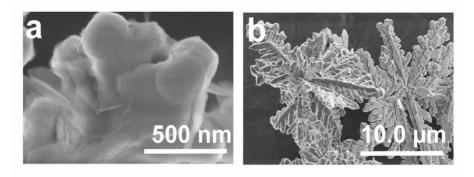


Fig. S1. SEM images of Co HFs.

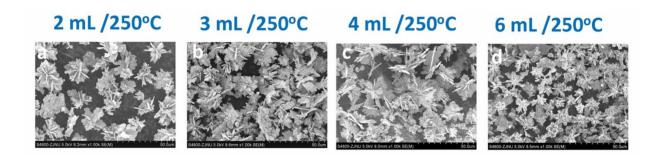


Fig. S2. SEM images of Co/C/Fe/C CSHFs formed under various δ .

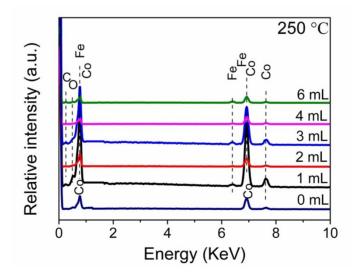


Fig. S3. EDX spectra of Co/C/Fe/C CSHFs formed under various δ

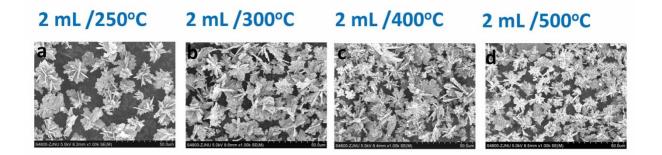


Fig. S4. SEM images of Co/C/Fe/C CSHFs formed under various T_{d} .

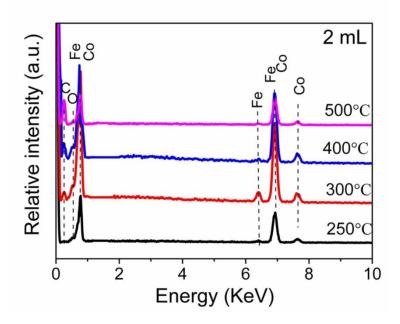
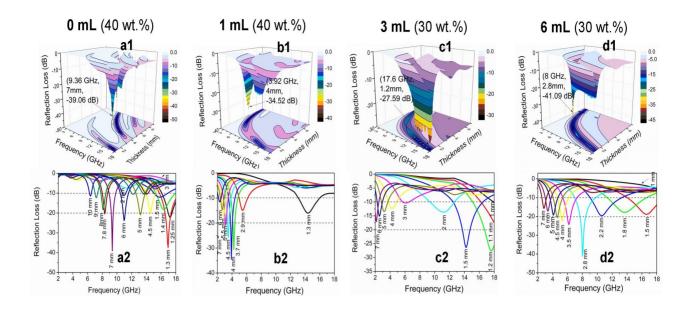



Fig. S5. EDX spectra of Co/C/Fe/C CSHFs formed under various T_{d} .

Fig. S6. (a1, b1, c1, d1) calculated 3D plots and (a2, b2, c2, d2) reflection loss curves of the paraffin composites containing samples with various mass fractions formed under various $Fe(CO)_5$ volumes.

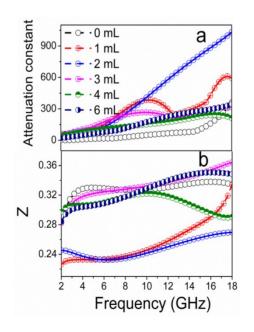


Fig. S7. (a) Attenuation constant (α) and (b) the modulus of the normalized characteristic impedance (*Z*, present Impedance matching) of the samples obtained under (a) various δ .

In general, microwave absorption is determined by impedance matching and attenuation constant (α). The α is calculated using the equation: $\alpha = \frac{\sqrt{2}\pi f}{c} \sqrt{(\mu' \varepsilon' - \mu' \varepsilon')^{2} + \sqrt{(\mu' \varepsilon'' - \mu' \varepsilon')^{2} + (\mu' \varepsilon'' - \mu' \varepsilon')^{2}}}$. The high α means that more EM waves are absorbed by MAMA via converting them into thermal energy or interfere. Seen from Fig. S7a, the α decreased in the following order: $\alpha_{2} > \alpha_{1} > \alpha_{3} > \alpha_{6} > \alpha_{4} > \alpha_{0}$. These results indicate that Co/C/Fe/C CSHFs with strawberry-like surface have much higher α than pure Co HFs owing to plasmon resonance and coupling caused by heterostructures with the strawberry-like surface. Impedance matching is defined by the modulus of the normalized characteristic impedance (Z), which is calculate using the equation: $Z = |Z_1/Z_0|$, where $z_1 = z_0 \sqrt{\mu_r/z_r}$. If Z value is close to 1, impedance matching will be high. In this case, more microwaves will enter the absorber without reflection at the air–absorber interface. Z as a function of frequency for all of the samples is shown in Fig. S7b. The Z values vary in the following order: $Z_0 \approx Z_3 \approx Z_6 > Z_4 > Z_1 > Z_2$. Obviously, Co/C/Fe/C CSHFs obtained at d = 3–6 mL has as similar impedance matching to Co HFs.