# **Supplementary Information**

## Synthesis, photophysical and electrochemical properties of new star-shaped

### molecule with 1,3,5-triethynylbenzene core and diketopyrrolopyrrole arms

Chunpeng Li, Qingfen Niu\*, Shanshan Zhang, Tianduo Li, Qingxin Yang,

Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and

Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of

Sciences), Jinan 250353, People's Republic of China

#### **Supplementary captions**

**Fig. S1** <sup>1</sup>H NMR spectra of **BDPP-1**.

Fig. S2 <sup>13</sup>C NMR spectra of BDPP-1.

Fig. S3 IR spectra of BDPP-1.

Fig. S4 The MALDI-TOF mass spectra of BDPP-1.

**Table S1**Elemental analysis of **BDPP-1**.

Fig. S5. Differential Pulse Voltammetry experiments of BDPP-1 in 0.1 M Bu<sub>4</sub>NClO<sub>4</sub> solution under N<sub>2</sub>, pulse height 50 mV; steptime 0.1 s; scan increment 5 mV; scan rate 50 mV s<sup>-1</sup>.

**Fig. S6(a)** DFT calculated optimized geo metry (left) and conformations (right) of the starshaped molecule; **(b)** The frontier molecular orbital distributions of the star-shaped molecule optimized by DFT calculations at the B3LYP/6-31G level.

Fig. S7 Fluorescent emission spectra of BDPP-1 in CHCl<sub>3</sub> solution with different concentrations ranged from  $2.0 \times 10^{-4}$  to  $5.0 \times 10^{-6}$  M.

Fig. S8 Fluorescent spectra of BDPP-1 in different water fractions (fw) at a concentration of  $1.0 \times 10^{-5}$  M.

| Fig. | <b>S1</b> |
|------|-----------|
|------|-----------|







Fig. S3







# Table S1

|   | Anal. (%) |   | Calc. (%) |
|---|-----------|---|-----------|
| С | 71.21     | С | 71.29     |
| Н | 7.11      | Н | 7.04      |
| N | 4.86      | N | 4.89      |
| S | 11.18     | S | 11.20     |

Fig. S5







Fig. S6 (b)



Fig. S7

Fig. S8



The corresponding fluorescence spectra of **BDPP-1** with different concentrations in CHCl<sub>3</sub> solution ranged from  $2.0 \times 10^{-4}$  to  $5.0 \times 10^{-6}$  M was performed to further study its fluorescence properties. As shown in **Fig. S7**, the **BDPP-1** exhibited strong fluorescence intensity (620 nm) at the low concentration of  $5.0 \times 10^{-6}$  M, indicating strong red fluorescence. However, the fluorescence intensity of **BDPP-1** decreased significantly as the concentration increases and the emission peak also red-shifted from 620 to 675 nm. Surprisingly, when the concentration arrived at  $2.0 \times 10^{-4}$  M, the fluorescence was almost completely quenched, suggesting the so-called concentration aggregation-induced quenching (ACQ) effect [1].

To further investigate the aggregation-induced quenching properties, the fluorescence behavior of **BDPP-1** in THF-water mixtures were carried out and the great changes were shown in **Fig. S8**. The **BDPP-1** displayed bright red fluorescence at 628 nm in pure THF solution. The emission intensity of **BDPP-1** decreased significantly when the fraction of water (fw) reached 10%. Whereas, as the fw arrived at 30%, the fluorescence quenched completely. These great changes in emission intensity of **BDPP-1** suggested a typical ACQ behavior. The distinct decrease of emission intensity against the increase of fw, which could be induced by the formation of aggregates and quenched the fluorescence through the intermolecular  $\pi$ - $\pi$  interaction.

#### **Reference:**

[1] Z. Wang, H. Shao, J. Ye, L. Tang and P. Lu, J. Phys. Chem. B, 2005, 109, 19627– 19633.