Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2019

1	Supplementary material
2	
3	Facile One-step Hydrothermal Synthesis of α -Fe ₂ O ₃ /g-C ₃ N ₄
4	Composites for the Synergistic Adsorption and Photodegradation of
5	Dyes
6	Tao Wang ^{a, b} , Manqi Huang ^{a, b} , Xiawei Liu ^{a, b} , Zhen Zhang ^c , Yonghong Liu ^c , Wei Tang ^a , Shaopan
7	Bao ^a , Tao Fang ^{a, b, *}
8	^a Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
9	^b University of Chinese Academy of Sciences, Beijing 100049, China
10	^c College of Science, Huazhong Agricultural University, Wuhan 430070, China
11	
12	* Corresponding author: Institute of Hydrobiology, Chinese Academy of Sciences, 7 Donghu
13	South Road, Wuchang District, Wuhan 430072, China.
14	<i>E-mail address:</i> <u>fangt@ihb.ac.cn</u> (T. Fang).
15	
16	

18 Table S1 Porous structure parameters of as-prepared sample.

Samples	BET Surface Total pore volume		Average pore width	
	Area	$(cm^3 g^{-1})$	(nm)	
	$(m^2 g^{-1})$			
g-C ₃ N ₄	69.6	0.15	8.54	
$a-Fe_2O_3/g-C_3N_4-0.25$	55.0	0.13	9.57	
a-Fe ₂ O ₃ /g-C ₃ N ₄ -0.5	52.2	0.14	10.55	
$a-Fe_2O_3/g-C_3N_4-1$	45.4	0.11	9.85	

19

20 Table S2 Comparison of maximum adsorption capacity of MO and MB on $g-C_3N_4$, α -21 Fe₂O₂/g-C₂N₄-0.5 and other adsorbents

Species	Materials	рΗ	$q_{max} (mg g^{-1})$	Ref
	MPC-300	5.0	25.52	1
	De-Oiled Soya	3.0	16.66	2
MO	Spent tea leaves (STL) modified with PEI	3.0	62.11	3
	$g-C_3N_4$	3.0	34.61	This work
	α -Fe ₂ O ₃ /g-C ₃ N ₄ -0.5	3.0	69.91	This work
				4
	Marine seaweed	5.0	5.20	4
	Wheat shells	7.0	16.56	5
MB	Activated carbon	7.0	9.81	6
	$g-C_3N_4$	8.0	9.66	This work
	α -Fe ₂ O ₃ /g-C ₃ N ₄ -0.5	8.0	29.46	This work

22

23 Text S1 Isotherms model for the adsorption

The Langmuir isotherm was used to describe the monolayer of adsorbate on the adsorbent surface and the surface homogeneity of the adsorbent. The Langmuir equation could be expressed as equation (S1)⁷:

27

$$q_e = \frac{q_{max}C_e b}{1 + C_e b}$$
 (S1)

28

The Freundlich model indicates the multilayer adsorption and the surface heterogeneity of the adsorbent. The Freundlich isotherm could be given as equation (S2)⁸:

$$q_e = K_f C_e^{1/n}$$
 (S2)

33 where $C_e (mg L^{-1})$ denotes the equilibrium concentration, $q_{max} (mg g^{-1})$ expresses 34 the maximum theoretical saturated adsorption capacity, b (L mg⁻¹) denotes the

35	Langmuir adsorption constant, K_f (mg ¹⁻ⁿ L ⁿ g ⁻¹) is the Freundlich adsorption				
36	coefficient and n is the constant depicting the adsorption intensity.				
37	Text S2 Kinetics model for the adsorption				
38					
39	The pseudo-first-order kinetic model is described as equation (S3) ⁷ :				
40					
41	$\ln\left(q_e - q_t\right) = \ln q_e - k_1 t \qquad (S3)$				
42					
43	The pseudo-second-order kinetic model is described as equation (S4) ⁹ :				
44					
	$\frac{t}{t} - \frac{1}{t} + \frac{t}{t}$				
45	$\frac{\overline{q}_t}{\overline{k}_2 q_e^2} + \frac{\overline{q}_e}{\overline{q}_e} $ (S4)				
46					
47	where k_1 and k_2 represent the pseudo-first- and pseudo-second-order rate				
48	constants, q_e and q_t (mg g ⁻¹) denote the adsorption of MO/MB at equilibrium and time				
49	t (min)				
50					
51					
52					
53	Table S3. Kinetic parameters for the adsorption of MO and MB on α -Fe ₂ O ₃ /g-C ₃ N ₄ -				
54	0.5.				
	Pseudo-first-order Pseudo-second-order				

			Pseudo-first-order			Pseudo-second-order		
species	$q_{e,exp} (mg g^{-1})$	$q_{e,cal} (mg g^{-1})$	$k_1(1 \text{ min}^{-1})$	R ²	$q_{e,cal} (mg g^{-1})$	k ₂ (g mg ⁻¹ min ⁻¹ 10 ³)	R ²	
MO	69.08	16.39	0.011	0.873	70.47	1.830	1	
MB	22.64	4.96	0.010	0.854	24.40	4.320	0.998	
-								

56 Text S3 Thermodynamic adsorption analysis

57 The standard free energy change (ΔG^{0}) can be calculated from the following equation 58 (S5) ¹⁰:

(S5)

 $\Delta G^0 = -RT ln K^0$

59

60

61

62 where R is the universal gas constant (8.314 J mol⁻¹K⁻¹), T is the temperature in 63 Kelvin. The sorption equilibrium constant, K⁰, can be calculated by plotting lnK_d 64 versus C_e (Figures S4) and extrapolating C_e to zero. The standard enthalpy change 65 (Δ H⁰) and the standard entropy change (Δ S⁰) are calculated from the following 66 equation (S6) ¹⁰:

$$lnK^{0} = \frac{\Delta S^{0}}{R} - \frac{\Delta H^{0}}{RT}$$
(S6)

69 Linear plots of $\ln K^0$ vs 1/T for MO and MB adsorption on α -Fe₂O₃/g-C₃N₄-0.5 70 are shown in Figure S5. The thermodynamic parameters are calculated from the plot 71 of $\ln K^0$ vs 1/T using equations (S5) and (S6).

- 72
- 73

74

Table S4. Thermodynamics parameters for the adsorption of MO and MB on α -76 Fe₂O₃/g-C₃N₄-0.5.

				ΔG^0 (kJ mol ⁻¹))
species	$\Delta H^0 (kJ mol^{-1})$	$\Delta S^0 (J \text{ mol}^{-1} \text{ k}^{-1})$	298K	308K	318K
MO	-17.84	-33.65	-7.89	-7.32	-7.23
MB	6.72	51.68	-8.69	-9.18	-9.73

85 Fig. S2. EDS images on α -Fe₂O₃/g-C3N4-0.5 before adsorption (a), after MO adsorption (b) and after MB adsorption (c).

Fig. S3. Pseudo-first-order linear plots for the removal of MO/MB by α -Fe₂O₃/g-C₃N₄-0.5. pH_{MO} = 3.0 ± 0.1, pH_{MB}= 8.0± 0.1, m/V = 0.25 g L⁻¹, and T = 298 ± 1 K.

Fig. S4. Linear plots of lnK_d vs C_e for MO (a) and MB (b) adsorption on α-Fe₂O₃/g-C₃N₄-0.5 at 298, 308, and 318 K. pH_{MO} = 3.0 ± 0.1 , pH_{MB}= 8.0 ± 0.1 , and m/V = 0.25 g L⁻¹.

- 98
- 99
- 100

103 Fig. S5. Linear plots of lnK^0 vs 1/T for the adsorption of MO (a) and MB (b) on α -104 Fe₂O₃/g-C₃N₄-0.5 at 298, 308, and 318 K. pH_{MO} = 3.0 ± 0.1, pH_{MB}= 8.0± 0.1, and 105 m/V = 0.25 g L⁻¹.

106

107

108 Fig. S6. Zeta-potential of the α -Fe₂O₃/g-C₃N₄-0.5 as a function of pH value. 109

- 111 Fig. S7. The chemical structures of (a) methyl orange molecule in basic solution and
- 112 the canonical forms in acidic solution ³, (b) methylene blue.
- 113

115 Fig. S8. Recycling of α -Fe₂O₃/g-C₃N₄-0.5 in the removal of MO/MB. pH_{MO} = 3.0 ± 116 0.1, pH_{MB}= 8.0± 0.1, m/V = 0.25 g L⁻¹, and T = 298 ± 1 K.

120 Fig. S9. XRD patterns on α -Fe₂O₃/g-C3N4-0.5 after MO/MB adsorption and 121 photocatalytic degradation

127 Fig. S10. XPS image α -Fe₂O₃/g-C₃N₄-0.5 (a) O 1s and α -Fe₂O₃ (b) O 1s.

131 Fig. S11. Kinetic fit of the photoreduction of MO (a) and MB (b) by g-C₃N₄, and α -

132 Fe₂O₃/g-C₃N₄-0.5, respectively, to the first-order kinetic model under visible light 133 irradiation ($\Box \ge 420$ nm). pH_{MO} = 3.0 ± 0.1, pH_{MB}= 8.0± 0.1, m/V = 0.25 g L⁻¹, and T = 134 298 ± 1 K.

Fig. S12. UV–vis spectra of g-C₃N₄ and α -Fe₂O₃/g-C₃N₄-0.5.

Fig. S13. PL spectra of g-C_3N_4 and $\alpha\text{-}Fe_2O_3/g\text{-}C_3N_4\text{-}0.5$

Fig. S14. Time-current curves of α -Fe₂O₃, g-C₃N₄, and α -Fe₂O₃/g-C₃N₄-0.5.

Fig. S15. Kinetic constants for photocatalytic degradation of MO (a) and MB (b) over a-Fe₂O₃/g-C₃N₄-0.5 at different scavengers (IPA, 0.01ml; TEOA, 0.01ml; SOD/TEOA, 1mg). pH_{MO} = 3.0 ± 0.1 , pH_{MB}= 8.0 ± 0.1 , m/V = 0.25 g L⁻¹, and T = 298 to ± 1 K.

157 Fig. S16. Possible photocatalytic degradation mechanism of MO/MB over the α -159 Fe₂O₃/g-C₃N₄-0.5. 160

```
162 References
```

```
164 1. T. Wen, J. Wang, S. Yu, Z. Chen, T. Hayat and X. Wang, ACS Sustainable Chemistry &
```

165		Engineering, 2017, 5, 4371-4380.
166	2.	A. Mittal, A. Malviya, D. Kaur, J. Mittal and L. Kurup, J Hazard Mater, 2007, 148, 229-240.
167	3.	S. Wong, H. H. Tumari, N. Ngadi, N. B. Mohamed, O. Hassan, R. Mat and N. A. Saidina
168		Amin, Journal of Cleaner Production, 2019, 206, 394-406.
169	4.	S. Cengiz and L. Cavas, Bioresource Technol, 2008, 99, 2357-2363.
170	5.	Y. Bulut and H. Aydin, Desalination, 2006, 194, 259-267.
171	6.	V. V. B. Rao and S. R. M. Rao, Chemical Engineering Journal, 2006, 116, 77-84.
172	7.	J. Wang, P. Wang, H. Wang, J. Dong, W. Chen, X. Wang, S. Wang, T. Hayat, A. Alsaedi and
173		X. Wang, ACS Sustainable Chemistry & Engineering, 2017, 5, 7165-7174.
174	8.	K. W. Jung, S. Y. Lee and Y. J. Lee, Bioresour Technol, 2018, 261, 1-9.
175	9.	X. Q. Liu, H. S. Ding, Y. Y. Wang, W. J. Liu and H. Jiang, Environ Sci Technol, 2016, 50,
176		2602-2609.
177	10.	G. X. Zhao, J. X. Li, X. M. Ren, C. L. Chen and X. K. Wang, Environmental Science &
178		Technology, 2011, 45 , 10454-10462.
179		