Supporting Information

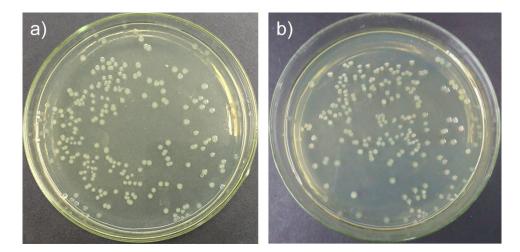
Nepenthes-inspired Multifunctional Nanoblades with Mechanical Bactericidal, Self-cleaning and Insect Anti-adhesive Characteristics

Yuan Xie^a, Jinyang Li^{a,*}, Daqin Bu^a, Xuedong Xie^a, Xiaolong He^b, Li Wang^{c,*}, and Zuowan Zhou^a

^aSchool of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China. ^bNational Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China. ^cQian Xuesen Laboratory of Space Technology, Beijing 100094, China.

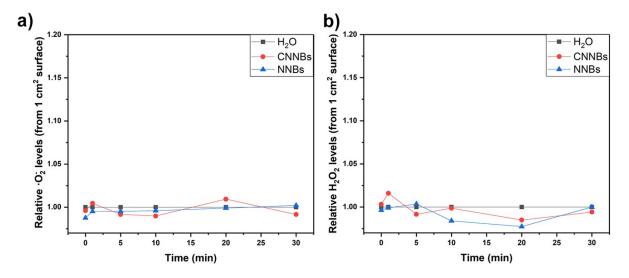
*Corresponding Authors:

Jinyang Li; E-mail: jinyang.li@swjtu.edu.cn.


Li Wang; E-mail: wangli@qxslab.cn.

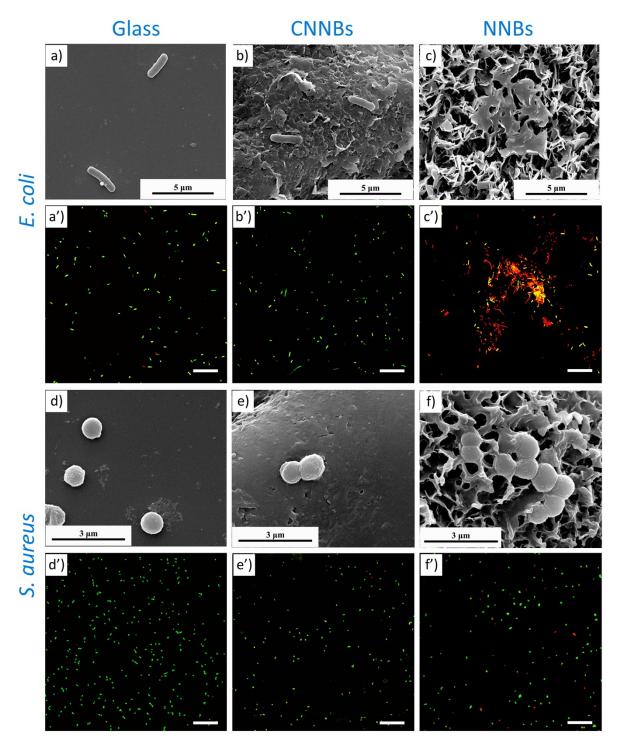
KEYWORDS *Bio-inspired; Nanoblade; Mechanical bactericidal activity; Insect nonadhesive; Self-cleaning.*

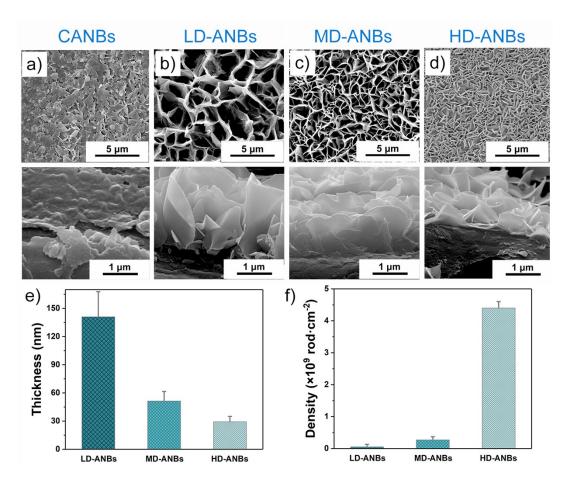
Contents:


- A: The bactericidal performance of peristome surface of the Nepenthes alata pitcher
- B: Difference in $\cdot O_2^-$ and H_2O_2 productivity of NNBs and CNNBs in dark
- C: Interaction between bacteria cells and NNBs surface
- D: The topography change of ANBs prepared with different growth temperature
- E: Characteristics of the aritificial nanoblades
- F: Correlation between aritificial nanoblades morphology and bactericidal performance
- G: Difference in $\cdot O_2^-$ and H_2O_2 productivity of H_2O and ANBs in dark
- H: Difference in Zn²⁺ and Al³⁺ productivity of ANBs

A: The bactericidal performance of peristome surface of the *Nepenthes alata* pitcher

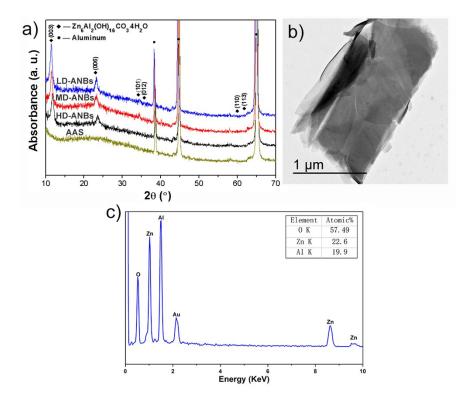
Figure S1. Optical images of the colony count of *E. coli* incubated with peristome of *Nepenthes* for 10 min. a) glass slide, b) peristome of *Nepenthes*.

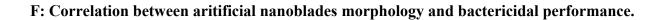


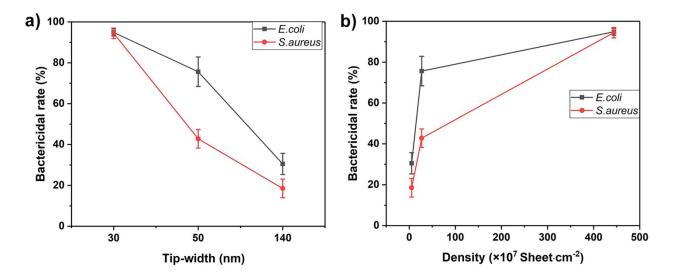

Figure S2. Production of $\cdot O_2^-$ and H_2O_2 of NNBs and CNNBs as the function of time.

A superoxide assay kit was used to compare the difference productivity of $\cdot O_2^{-1}$. The absorbance at 450 nm of formazan compounds indicated the concentation of $\cdot O_2^{-1}$ by the NNBs is very closed to that of H₂O and CNNBs samples, indicating $\cdot O_2^{-1}$ is not the major factor responsible for the asobserved bactericidal behavior. Similarly, a hydrogen peroxide kit was used to compare the productivity of H₂O₂ of these samples. The absorbance at 560 nm of Fe³⁺-xylenol orange compounds indicated the concentation of H₂O₂ by the samples is also very closed, showing H₂O₂ is not the major factor responsible for the as-observed bactericidal behavior.

C: Interaction between bacteria cells and NNBs surface


Figure S3. Interaction between bacteria cells and NNBs surface. *E. coli* and *S. aureus* cells on glass, CNNBs and NNBs after 10 min contact. a-f) SEM image, a'-f') CLSM image.


D: The topography change of ANBs prepared with different growth temperature


Figure S4. The topography change of ANBs prepared with different growth temperature. a) b-d) SEM images of ANBs hydrothermally grown on aluminum alloy sheet at 90, 70 and 50 °C, respectively, average topographic parameters: e) tip-width and f) density, as determined by SEM.

E: Characteristics of the ANBs

Figure S5. Characteristics of the aritificial nanoblades. a) XRD patterns of pristine AAS and ANBs on AAS. b) TEM image of a single Zn–Al layered double hydroxides nanoblade detached from ANBs. b) EDS spectrum of ANBs.

Figure S6. Correlation between aritificial nanoblades morphology and bactericidal performance. a) Tip-width of nanoblade. b) Density of nanoblade.

G: Difference in $\cdot O_2^{\text{-}}$ and H_2O_2 productivity of H_2O and ANBs in dark

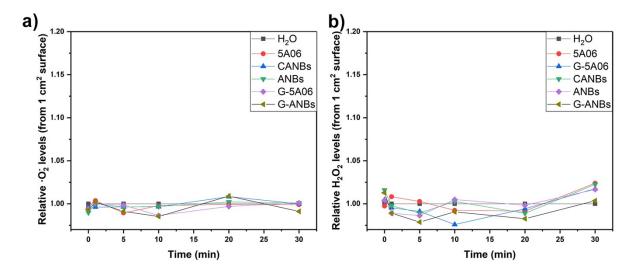


Figure S7. Production of $\cdot O_2^-$ and H_2O_2 of 5A06 aluminum alloy sheet and ANBs as the function of time.

H: Difference in Zn²⁺ and Al³⁺ productivity of ANBs

Samples	Concentration of Zn ²⁺ (mg/L)	Concentration of Al ³⁺ (mg/L)
Compacted HD-ANBs	0.623 ± 0.084	0.756 ± 0.179
LD-ANBs	0.212 ± 0.021	0.305 ± 0.067
MD-ANBs	0.227 ± 0.019	0.387 ± 0.073
HD-ANBs	0.192 ± 0.018	0.329 ± 0.078

TABLE S1. Atomic Absorption Spectrometry Results of Zn²⁺ and Al³⁺ Leaching Out from ANBs