Electronic Supplementary Information (ESI)

Crystal alignment of an LiFePO₄ cathode material for lithium ion

batteries using its magnetic properties

Cham Kim1*, Yeokyung Yang1, Dongwoo Ha2, Dong Hwan Kim1 and Hoyoung Kim1

¹DGIST, 333 Techno Jungang-daero, Daegu, 42988, Republic of Korea

² KERI, 12 Bulmosan-ro 10beon-gil, Changwon, Gyeongsangnam-do, 51543, Republic of Korea

^{*} Corresponding author (Cham Kim).

Tel.: +82-53-785-3602

Fax: +82-53-785-3609

E-mail: charming0207@dgist.ac.kr

Fig. S1. Crystal alignment process for a randomly-oriented LiFePO₄ film, in which a magnetic field is applied perpendicular to a current collector by using a superconducting magnet, possibly resulting in the b-axis of LiFePO₄ aligned parallel to the magnetic field.

ESI 2: X-ray diffraction data

Table S1. Intensities of the (*hkl*) planes for the fabricated (LFP, mf-LFP) and randomly-oriented LiFePO₄ (JCPDS card No. 83-2092). p and p_0 values indicate the intensity fractions of (0*k*0) planes for the fabricated and randomly-oriented samples, respectively.

hkl	LFP (<i>p</i> = 0.1176)	mf-LFP $(p = 0.4933)$	JCPDS card No. 83-2092 $(p_0 = 0.1122)$
	I(hkl)	I(hkl)	$I_0(hkl)$
200	217	270	38
101	377	345	76
210	283	503	24
011	225	405	9
111	448	613	83
020	565	6930	78
301	180	180	31
311	575	605	100
121	222	547	31
410	167	198	22
102	102	117	13
401	145	267	18
112	122	96	16
321	58	112	6
212	37	54	4
022	72	113	12
511	108	305	7
222	200	263	31
412	95	83	15
610	127	145	17
331	135	385	20
430	87	242	11
113	137	800	16
620	120	470	17

ESI 3: Magnetic and physical properties

Quantity	^a Gaussian unit	Conversion factor	SI unit
χ_m	8.45×10^{-3} emu mol ⁻¹	$4\pi imes 10^{-6}$	b 1.06 × 10 ⁻⁷ m ³ mol ⁻¹
V	_	_	$3.05 \times 10^{-15} \text{ m}^3$
μ_0	1 (dimensionless)	$4\pi imes 10^{-7}$	$4\pi \times 10^{-7} \text{ H m}^{-1}$
k_B	_	_	$1.38 \times 10^{-23} \text{ J K}^{-1}$
Т	_	_	298 K
В	_	_	$3.74 \times 10^{-5} \text{ Wb m}^{-2} (=T)$

Table S2. Magnetic and physical properties of the LiFePO₄ crystal, which were used to calculate the minimum magnetic flux density (B, Eq. 4) required for rotating the crystal.

^a Quantities in Gaussian unit are multiplied by conversion factors to convert to those in SI unit.¹⁻³

^b The molar susceptibility (χ_m) is converted to a dimensionless susceptibility (χ) by using the theoretical density (ρ) and molecular weight (M) of LiFePO₄ (i.e., $\chi = (\rho/M)\chi_m$).

References

- 1 D. R. Lide, CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, 2003.
- 2 V. K. Varadan, L. Chen and J. Xie, *Nanomedicine: Design and Applications of Magnetic Nanomaterials, Nanosensors and Nanosystems*, John Wiley & Sons, Chichester, 2008.
- 3 N. Darton, A. Ionescu and J. Llandro, *Magnetic Nanoparticles in Biosensing and Medicine*, Cambridge University Press, Cambridge, 2019.