Supporting Information

for

How Intramolecular Coordination Bonding (ICB) Control the Homolysis of the C—ON Bond in Alkoxyamines

Mariya Edeleva,^{*b,c**} Gérard Audran,^{*a*} Elena Bagryanskaya,^{*b,c*} Irina Bagryanskaya,^{*b*} Jean-Patrick Joly,^{*a*} Sylvain R. A. Marque,^{*a,b*} Anna Iurchenkova,^{*c*} Polina Kaletina,^{*b,c*} Sergey Cherkasov,^{*b,c*} Tung To Hai,^{*a*} Evgeny Tretyakov,^{*b,c*} and Svetlana Zhivetyeva^{*b,c*}

^a Aix Marseille Univ, CNRS, ICR, UMR 7273, case 551, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20 France. ^b N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Pr. Lavrentjeva, Novosibirsk 630090, Russia. E-mail: edeleva@nioch.nsc.ru

^c Novosibirsk State University, 2 Pirogova Str., Novosibirsk 630090, Russia.

- 1) Characterization of compounds
 - a. ¹H, ¹³C NMR for **4-6** and HRMS data for **4-6**
 - b. Measurements of k_d for compounds **6**-RS/SR
 - c. NMR data on py addition to the solution of [Zn(hfac)₂(1-RS/SR)], [Zn(hfac)₂(3-RS/SR)], [(Zn(hfac)₂)3(4-RS/SR)₂].

a) ¹H, ¹³C NMR for **4-6** and HRMS data for **4-6**

RRSS-4 (300 MHz, CDCl₃)

RRSS-4 (75 MHz, CDCl₃)

RRSS-4 HRMS

RSSR-4 (300 MHz, CDCl₃)

RSSR-4 (75 MHz, CDCl₃)

RSSR-4 HRMS

RRSS-5 (400 MHz, CDCl₃)

RRSS-5 (75 MHz, CDCl₃)

RRSS-5 HRMS

RSSR-5 (400 MHz, CDCl₃)

RSSR-5 (75 MHz, CDCl₃)

RSSR-5 HRMS

RRSS-6 (300 MHz, CDCl₃)

RRSS-6 (75 MHz, CDCl₃)

RRSS-6 HRMS

RSSR-6 (400 MHz, CD₃OD)

RSSR-6 (75 MHz, CDCl₃)

RSSR-6 HRMS

b) Measurement temperature dependence of k_d for alkoxyamine RS/SR-6.

Table 1SI k_d values measured in *t*-Butylbenzene for alkoxyamine RS/SR-6

#	Т, °С	k _d , s ⁻¹
1	324	2.1E-5
2	343	2.2E-4
3	363	0.0024

c) NMR data on Py addition to the solution of $[Zn(hfac)_2(1-RS/SR)]$, $[Zn(hfac)_2(3-RS/SR)]$, $[(Zn(hfac)_2)_3(4-RS/SR)_2]$.

¹H NMR spectroscopy of the $[Zn(hfac)_2(1-RS/SR)]$ (a) complex in C₆D₆ (0.02 M solution) with different amounts of Py as a competitor.

¹H and ³¹P NMR spectroscopy of the [Zn(hfac)₂(2-*RR/SS*)] complex in C₆D₆ (0.02 M solution) along with 2-*RR/SS* and 2-*RR/SS* in the presence of 1 eqv. of TFA.

¹H and ³¹P NMR spectroscopy of the $[Zn(hfac)_2(3-RS/SR)]$ complex in C₆D₆ (0.02 M solution) with different amounts of Py as a competitor.

¹H NMR spectroscopy of the $[(Zn(hfac)_2)_3(4-RS/SR)_2]$ complex in C₆D₆ (0.02 M solution) with different amounts of Py as a competitor.

¹H (a) and ³¹P (b) NMR spectroscopy of the $[Zn(hfac)_2(5-RS/SR)_2]$ complex in C₆D₆ (0.02 M solution) along with 5-*RS/SR* and 5-*RS/SR* in the presence of 1 eqv. of TFA.