Supplementary information

Synthesis, oxide formation, dielectric properties and transistor properties of yttrium oxide and amorphous aluminium oxide using a chimie douce solution precursor route

Fig.S1 Single crystal structure of Al-UN 3. "ball and stick" illustration.

Table S1 Crystal data and structure refinement of AI-UN.

Empirical formula	C7 H28 AI N15 O16		
Formula weight	605.42		
Temperature	293(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P2 ₁ /c		
Unit cell dimensions	a = 21.357(1) Å	□= 90°.	
	b = 17.2300(7) Å	□= 106.960(7)°.	
	c = 14.1833(6) Å	□ = 90°.	
Volume	4992.2(4) Å ³		
Z	8		
Density (calculated)	1.611 Mg/m ³		
Absorption coefficient	0.183 mm ⁻¹		
F(000)	2528		
Crystal size	0.400 x 0.220 x 0.220 mm ³		
Theta range for data collection	2.566 to 25.348°.		
Index ranges	-25<=h<=16, -20<=k<=19, -10<=l<=17		
Reflections collected	18866		
Independent reflections	9076 [R(int) = 0.0227]		
Completeness to theta = 25.242°	99.3 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.961 and 0.930		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	9076 / 13 / 706		
Goodness-of-fit on F ²	1.030		
Final R indices [I>2sigma(I)]	R1 = 0.0600, wR2 = 0.1410		
R indices (all data)	R1 = 0.0964, wR2 = 0.1626		
	1.115 and -0.791 e.Å ⁻³		

Table S2 Crystal data and structure refinement of Y-UN.

Identification code	NK10 (Y-UN)		
Empirical formula	C4 H16 N11 O13 Y		
Formula weight	515.19		
Temperature	293(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P-1		
Unit cell dimensions	a = 7.5428(7) Å	a= 112.238(8)°.	
	b = 11.256(1) Å	b= 96.414(7)°.	
	c = 11.976(1) Å	g = 94.215(7)°.	
Volume	927.83(15) Å ³		
Ζ	2		
Density (calculated)	1.844 Mg/m ³		
Absorption coefficient	3.232 mm ⁻¹		
F(000)	520		
Crystal size	0.500 x 0.480 x 0.460 mm ³		
Theta range for data collection	3.069 to 25.344°.		
Index ranges	-9<=h<=9, -13<=k<=13, -14<=l<=14		
Reflections collected	5662		
Independent reflections	3363 [R(int) = 0.0152]		
Completeness to theta = 25.242°	99.2 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.318 and 0.295		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	3363 / 16 / 310		
Goodness-of-fit on F ²	1.076		
Final R indices [I>2sigma(I)]	R1 = 0.0271, wR2 = 0.0681		
R indices (all data)	R1 = 0.0335, wR2 = 0.0695		
Largest diff. peak and hole	0.438 and -0.521 e.Å ⁻³		

Fig.S2 FTIR-spectrum of (a) bis(diethyl-2-nitromalonato) nitrato yttrium(III) 1, (b) dinitrato tetra(urea) yttrium(III)-nitrate 2 and (c) hexakis(urea) aluminium(III)-nitrate 3.

Fig.S3 ¹H-NMR-spectrum (CD₃OD) of bis(diethyl-2-nitromalonato) nitrato yttrium(III) **1**.

Fig.S4 ¹³C-NMR-spectrum (DMSO) of bis(diethyl-2-nitromalonato) nitrato yttrium(III) 1.

 $\label{eq:Fig.S5} Fig.S5 \ \mbox{DEPT-spectrum (DMSO) of bis(diethyl-2-nitromalonato) nitrato \ yttrium(III) 1.$

Fig.S6 ¹H-NMR-spectrum (DMSO) of dinitrato tetra(urea) yttrium(III)-nitrate 2.

Fig.S7 ¹³C-NMR-spectrum (DMSO) of dinitrato tetra(urea) yttrium(III)-nitrate 2.

Fig.S8 ¹H-NMR-spectrum (DMSO) of hexakis(urea) aluminium(III)-nitrate 3.

Fig.S9 ¹³C-NMR-spectrum (DMSO) of hexakis(urea) aluminium(III)-nitrate 3.

Fig.S10 ²⁷Al-NMR-spectrum (CD₃OD) of hexakis(urea) aluminium(III)-nitrate 3.

Fig. S11 ²⁷Al-NMR-spectrum of empty crucible.

Fig. S12 XRD of (a) bis(diethyl-2-nitromalonato) nitrato yttrium(III) **1** annealed at 500 °C, (b) dinitrato tetra(urea) yttrium(III)-nitrate **2**annealed at 600 °C and (c) hexakis(urea) aluminium(III)-nitrate **3** annealed at 600 °C.

Fig. S13 XRD of empty crucible.

Temperature (°C)	Y-DEM-NO ₂ (nm)	Y-UN (nm)	AI-UN (nm)
350	156	82	59
300	163	87	61
250	248	/	74
200	286	/	130

Table S3 Summary of spectroscopic ellipsometry measurements.

Fig. S 14 C 1s (a) and N 1s (b) XPS core spectra of samples obtained from Y-DEM-NO₂ precursor 1 annealed for 2 hours each at 200 °C, 250 °C, 300 °C and 350 °C.

Fig. S 15 C 1s XPS core spectra of samples obtained from Y-UN precursor **2** annealed for 2 hours each at 200 °C, 250 °C, 300 °C and 350 °C. (a) initial sample without sputtering and (b) after 120 s of surface sputtering (cluster size of 300 atoms with 8000 eV).

Fig. S 16 N 1s XPS core spectra of samples obtained from Y-UN precursor **2** annealed for 2 hours each at 200 °C, 250 °C, 300 °C and 350 °C. (a) initial sample surface without sputtering and (b) after 120 s sputtering (cluster size of 300 atoms with 8000 eV).

Fig. S 17 a-c) AFM images of precursor 1, 2 and 3 prepared at 350 °C.

Fig. S 18 Schematic illustration of the fabricated Y_xO_y based thin film transistor.