# In situ self-assembly of Ni<sub>3</sub>S<sub>2</sub>/MnS/CuS/reduced graphene composite

# on nickel foam for high power supercapacitors

Wenbo Li<sup>a,b</sup>, Weiming Song<sup>a</sup>\*, Haihua Wang<sup>b</sup>\*, Yong-Mook Kang<sup>c</sup>

a. College of Chemistry and Chemical Engineering, Qiqihar University, Heilongjiang Province 161006, R.P. China.

E-mail address: qdsongweiming@163.com

b. Shannxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an 710021, R.P. China.

E-mail address: whh@sust.edu.cn.

c. Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea

# $\Box$ . Electrochemical analysis of electrodes.

- 1. the electrochemical performance of the negative electrode.
- 2. Specific capacitance of the oxidation of Ni foam.
- 3. the different mass loading of positive and negative electrode.
- 4. the Ni foam that be corrosive make contribution to the ion penetration.

## $\equiv$ . Analysis.

- 1. the pore information.
- $\equiv$ . Table
- 1. Table S1: The element content of the  $Ni_3S_2/MnS/CuS@rGO$  composite.
- 2. Table S2: The element content of the  $Ni_3S_2/MnS/CuS$  composite.
- 3. Table S3 the mass loading of active material.

## **Notes and References**

#### **Electrochemical analysis of electrodes.**

1. CV and GCD of rGO at different scan rates in KOH is Fig. S1 (a) and (b). The rGO electrode shows the main of capacitive behavior, rGO also shows pseudocapacitance besides electric double-layer capacitance at the potential window of  $-1.0 \sim -0.3$  V. An potential redox reaction probably exists as follows within this potential window (Fig. S1 a). The specific capacitance of rGO is 124 F/g at 1 A/g (Fig. S1 b).<sup>1</sup>



Fig.S1 (a) CV and (b) GCD curves of the reduced graphene oxide (rGO).

2. Specific capacitance of the Ni oxide foam is 44.29 F/g. Oxidized nickel foam has no significant contribution to pseudocapacitance (Fig.S2).



Fig.S2 GCD analyses of the oxide of Ni Foama various current densities (1,2 and 4 A/g) in 6.0 M KOH.

 Fig.S3 (a) and (b) show the specific capacitance of the different mass loading of Ni<sub>3</sub>S<sub>2</sub>/MnS/CuS@rGO (positive) and rGO (negative).



Fig. S3 (a) and (b) the different mass loading of Ni<sub>3</sub>S<sub>2</sub>/MnS/CuS@rGO (positive) and rGO (negative).

4. The electrode surface reaction is diffusion-controlled that was analyzed by the linear relationship of redox peak current and the scan rate. The diffusion of nickel foam on ions is not significant (Fig.S4).<sup>2</sup>



Fig. S4 peak current density as a function of scan rate.

### $\Box \Box$ Analysis.

The adsorption and desorption isotherms observed for the Ni<sub>3</sub>S<sub>2</sub>/MnS/CuS@rGO composite and the Ni<sub>3</sub>S<sub>2</sub>/MnS/CuS are suitable for IV-type isotherm with H<sub>3</sub> hyteresis. Fig. S4 a and b show the Brunauer - Emmett - Teller (BET) surface areas for the Ni<sub>3</sub>S<sub>2</sub>/MnS/CuS@rGO and Ni<sub>3</sub>S<sub>2</sub>/MnS/CuS are ensue to be 238 m<sup>2</sup>/g, 198 m<sup>2</sup>/g, respectively. From Fig. S5 (c) and (d) indicate that Ni<sub>3</sub>S<sub>2</sub>/MnS/CuS@rGO belong to microporous structure and Ni<sub>3</sub>S<sub>2</sub>/MnS/CuS belong to mesoporous structure.<sup>3</sup>



Fig S5  $N_2$  adsorption-desorption isotherms of  $Ni_3S_2/MnS/CuS@rGO$  (a) and  $Ni_3S_2/MnS/CuS@rGO$  (b) annealed at 200 °C. (c) and (d) are pore size distribution curve

#### 2. Table

| Table S1: The element conte | t of the Ni <sub>3</sub> S <sub>2</sub> /MnS/CuS@rGO composite |
|-----------------------------|----------------------------------------------------------------|
|-----------------------------|----------------------------------------------------------------|

| Element | ICP(%)  | Element | EA(%)  |
|---------|---------|---------|--------|
| Ni      | 23.2375 | С       | 1.870  |
| Cu      | 23.6714 | S       | 20.922 |
| Mn      | 61.009  |         |        |

| Table S2: The element content of the $Ni_3S_2/MnS/CuS$ composite |         |         |        |  |  |
|------------------------------------------------------------------|---------|---------|--------|--|--|
| Element                                                          | ICP(%)  | Element | EA(%)  |  |  |
| Ni                                                               | 23.7784 | S       | 22.472 |  |  |
| Cu                                                               | 29.3466 |         |        |  |  |
| Mn                                                               | 10.7670 |         |        |  |  |

In this experiment, we use the change weight of pure nickel foam before and after is as the weight of active materials.

| Table S3 the mass loading of active material |                           |                                                      |                  |  |  |  |
|----------------------------------------------|---------------------------|------------------------------------------------------|------------------|--|--|--|
| 1 cm×1 cm<br>NF / mg                         | ①Pure Nickel<br>foam / mg | ②Ni <sub>3</sub> S <sub>2</sub> /MnS/CuS@rGO-NF / mg | $\Delta_{\rm m}$ |  |  |  |
|                                              |                           |                                                      | (2-1)            |  |  |  |
| 1                                            | 43.2                      | 45.9                                                 | 2.7              |  |  |  |
| 2                                            | 36.8                      | 39.9                                                 | 3.1              |  |  |  |
| 3                                            | 41.5                      | 45.1                                                 | 3.6              |  |  |  |
| 4                                            | 42.7                      | 45.3                                                 | 2.6              |  |  |  |
| 5                                            | 38.6                      | 41.5                                                 | 2.9              |  |  |  |
| 6                                            | 40.8                      | 43.8                                                 | 3                |  |  |  |
| 7                                            | 39.4                      | 43.5                                                 | 3.1              |  |  |  |
| 8                                            | 27.5                      | 29.7                                                 | 2.2              |  |  |  |
| 9                                            | 31.3                      | 34.5                                                 | 3.2              |  |  |  |
| 10                                           | 40                        | 43.6                                                 | 3.6              |  |  |  |
| average                                      | 38.2                      | 41.3                                                 | 3.1              |  |  |  |

## **Notes and References**

- [1] Wei. Si, Xiao. Wu, Jin Zhou, Fei. Guo, Shuping Zhuo, Hong. Cui, and Wei Xing, Nanoscale Res. Lett., 2013, 8, DOI: 10.1186/1556-276x-8-247.
- [2] X. Wang, and P. Lee, J. Mater. Res., 2015, 30, DOI: 10.1557/jmr.2015.342.
- [3] Arvinder Singh, and Amreesh Chandra, Sci. Rep., 2015, 8, DOI: 10.1038/srep15551.