Structural complexities and sodium-ion diffusion in the intercalates Na_xTiS₂: move it, change it, re-diffract it

Electronic Supplementary Information (ESI)

Dennis Wiedemann, *^a Emmanuelle Suard ^b and Martin Lerch ^a

^aTechnische Universität Berlin, Institut für Chemie, Berlin, 10623, Germany. E-mail: dennis.wiedemann@chem.tu-berlin.de ^bInstitut Laue-Langevin, Grenoble, 38042, France

Content

1	Details on X-ray iffraction	2
2	Details on neutron diffraction	4
3	ICSD orrections	.7
4	References	.7
-		

1 Details on X-ray diffraction

Measurement was carried out at ambient temperature on a "PANalytical X'Pert PRO MPD" diffractometer equipped with a "PIXcel" detector using nickel-filtered Cu- K_{α} radiation ($\lambda_1 = 1.54056$ Å, $\lambda_2 = 1.54439$ Å, $I_2/I_1 = 0.5$) in Bragg–Brentano (θ – θ) geometry. Initial Le-Bail fits and following calculations were carried out using JANA2006.¹ Peak profiles were fitted with a pseudo-Voigt function using the Thompson–Cox–Hastings approach (Gaussian parameters U, V, and W; Lorentzian parameter X).² Asymmetry was corrected for using the Bérar–Baldinozzi method with four parameters.³ Displacement and transparency corrections were refined. The background was modelled using 15 Legendre polynomials between manually defined points. A scale factor and two parameters for roughness correction according to Pitschke, Hermann, and Mattern were employed.⁴ Atomic displacements were refined with an isotropic model.

Fig. S1 X-ray diffractogram of Na_{0.5}TiS₂-3 R_1 with results of Rietveld refinement ($R_p = 0.0363$, $wR_p = 0.0621$, $R_{exp} = 0.0186$, $R_F = 0.0428$, $R_I = 0.0660$). Red: calculated, black: observed, blue: difference density; green: Bragg positions.

Fig. S2 Comparison of the X-ray diffractograms simulated for Na_{0.55}TiS₂-3*R*₁ in *R*3*m* (model from literature) and *R*3*m* (symmetrized by slightly adjusting atomic positions with disordered sodium position) with $\lambda = 1.54056$ Å (Cu-*K*_{a1}) and $f = 0.25^{\circ}$ (Gaussian profile).

Fig. S3 X-ray diffractogram of "Na_{0.9}TiS₂-2*H*" with results of Le-Bail fit ($R_p = 0.0408$, $wR_p = 0.0828$). Red: calculated, black: observed, blue: difference density; green: Bragg positions. Insets show details of the low-angle regime. The high relative intensity of the first reflection indicates a strongly preferred orientation along (001). The low overall quality of the fit is due to the neglect of reflections (*e.g.*, a prominent shoulder at *ca*. 12.4°) or their features (*e.g.*, splitting at *ca*. 30.5, 32.5, 35.5, and 39.5°).

2 Details on neutron diffraction

Fig. S4 Neutron diffractogram of Na_{0.5}TiS₂- $3R_1$ at 19 °C with results of Rietveld refinement. Red: calculated, black: observed, blue: difference density; green: Bragg positions for Na_{0.5}TiS₂- $3R_1$ (bottom) and *Fm3m* byphase (top).

Fig. S5 Neutron diffractogram of Na_{0.5}TiS₂- $3R_1$ at 300 °C with results of Rietveld refinement. Red: calculated, black: observed, blue: difference density; green: Bragg positions for Na_{0.5}TiS₂- $3R_1$ (bottom) and *Fm3m* byphase (top).

Fig. S6 Neutron diffractogram of Na_{0.5}TiS₂- $3R_1$ at 600 °C with results of Rietveld refinement. Red: calculated, black: observed, blue: difference density; green: Bragg positions for Na_{0.5}TiS₂- $3R_1$ (bottom) and *Fm*3*m* byphase (top).

Fig. S7 Temperature evolution of cell lengths and volume in $Na_{0.5}TiS_2-3R_1$. Lines are merely guides to the eye; error bars are smaller than symbols.

Fig. S8 Temperature evolution of equivalent displacement parameters in $Na_{0.5}TiS_2-3R_1$. Lines are merely guides to the eye; error bars are generally smaller than symbols.

Fig. S9 Crystal structure of $Na_{0.5}TiS_2-3R_1$ at 18, 300, 600, and 700 °C (from left to right) according to neutron diffraction. Atoms as ellipsoids of 75% probability (harmonic displacement only); grey: titanium, blue: so-dium, yellow: sulphide ions; unit cell in black.

3 ICSD Corrections

Table S1. Reassignment of isopointal structures with the formerly assigned type "CuCrSe₂-AgCrSe₂(R3m)" to alloconfigurational structure types (effective since May 2019).

ICSD	Structured	Structure	ICSD	Structured	Structure
Number	Formula	Туре	Number	Formula	Туре
1884	InSe	γ-InSe	77990	RbTiS ₂	CuCrSe ₂
2308	InSe	γ-InSe	84639	CrWN ₂	AgCrS ₂
9992	Na _{0.6} CoO ₂		88852	AuCrS ₂	AgCrS ₂
23002	InSe	γ-InSe	89454	$(H_{0.19}Na_{0.06}K_{0.25})CoO_2 \cdot 0.3 H_2O$	
23448	KSnS ₂	CuCrSe ₂	100124	Na _{0.6} VSe ₂	
23449	RbSnS ₂	CuCrSe ₂	100594	CuCrS ₂	CuCrSe ₂
24796	CuCrS ₂	CuCrSe ₂	100595	$Cu_{1.016}Cr_{0.91}S_2$	
24797	AgCrS ₂	CuCrSe ₂	161375	$Na_{0.62}CoO_2$	
24798	CuCrSe ₂	CuCrSe ₂	184736	$Na_{0.8}(Ni_{0.33}Mn_{0.33}Co_{0.33})O_2$	CuCrSe ₂
24799	AgCrSe ₂	CuCrSe ₂	187401	CuCrSe ₂	CuCrSe ₂
25625	CuCrSe ₂	CuCrSe ₂	200983	$Na_{0.7}(Cr_{0.7}Ti_{0.3})S_2$	CuCrSe ₂
25626	AgCrSe ₂	AgCrS ₂	201396	TlCrS ₂	CuCrSe ₂
25627	CuCrS ₂	AgCrS ₂	291155	$Na_{0.5796}(Mn_{0.65}Co_{0.18}Ni_{0.17})O_2$	CuCrSe ₂
25628	AgCrS ₂	AgCrS ₂	604972	$(Ag_{0.5}Cu_{0.5})CrS_2$	CuCrSe ₂
40819	$K_{0.6}VS_2$	CuCrSe ₂	604981	AgCrS ₂	CuCrSe ₂
41477	InSe	γ-InSe	604993	AgCrSe ₂	CuCrSe ₂
42393	CuCrS ₂	CuCrSe ₂	605002	AgCrTe ₂	CuCrSe ₂
42394	CuCrS ₂	CuCrSe ₂	605616	AgNiSe ₂	CuCrSe ₂
42395	AgCrS ₂	CuCrSe ₂	605619	AgNiTe ₂	CuCrSe ₂
42396	AgCrS ₂	CuCrSe ₂	625764	CuCrS ₂	CuCrSe ₂
42397	AgCrSe ₂	CuCrSe ₂	625799	CuCrSe ₂	CuCrSe ₂
42398	AgCrSe ₂	CuCrSe ₂	626736	TlCrSe ₂	AgCrS ₂
68423	AgCrSe ₂	CuCrSe ₂	629005	(CuSb)Te ₂	γ-InSe
71092	Na0.55TiS2	CuCrSe ₂	639178	HgTaS ₂	
71932	LiMoN ₂	AgCrS ₂	640479	InSe	γ-InSe
73388	GaSe	γ-InSe	640483	InSe	γ-InSe
76540	Na0.6(Ti0.4V0.6)S2	CuCrSe ₂	640505	InSe	γ-InSe
76542	$Na_{0.5}VS_2$		640507	InSe	γ-InSe
76550	Na _{0.6} VSe ₂	CuCrSe ₂	641335	KTiS ₂	CuCrSe ₂
77596	Na _{0.6} VSe ₂	CuCrSe ₂	644994	NaVS ₂	

4 References

- 1 V. Petříček, M. Dušek and L. Palatinus, Z. Kristallogr. Cryst. Mater., 2014, 229, 345-352.
- 2 P. Thompson, D. E. Cox and J. B. Hastings, J. Appl. Crystallogr., 1987, 20, 79–83.
- 3 J.-F. Bérar and G. Baldinozzi, J. Appl. Crystallogr., 1993, 26, 128–129.
- 4 W. Pitschke, H. Hermann and N. Mattern, *Powder Diffr.*, 1993, **8**, 74–83.