Supporting Information

Novel carbazole-based donor-isoindolo[2,1-a]benzimidazol-11-one acceptor polymers for ternary flash memory and light-emitting

Qian Zhang¹, Chunpeng Ai², Dianzhong Wen², Dongge Ma³, Cheng Wang¹, Shuhong Wang^{1,*}, Xuduo Bai^{1,*}

1 Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry Engineering and Materials Science, Heilongjiang University, Harbin, 150080, China

2 Key Laboratories of Senior-education for Electronic Engineering, Heilongjiang University, Harbin, 150080, China

3 Institute of Polymer Materials, South China University of Technology, Guangzhou,510640, China

List of Contents

1.	Synthesis of monomer 0f, 2f and 4f	2
2.	FT-IR and ¹ H-NMR of monomer 0f, 2f and 4f	3
3.	FT-IR of polymer PCz0, PCz2 and PCz4	6
4.	¹ H-NMR of polymer PCz0, PCz2 and PCz4	7
5.	Thermal gravimetric analyses of polymer PCz0, PCz2 and PCz4	9
6.	The ON/OFF current ratio of three memory devices	10
7.	Illustration of molecular orbitals and the corresponding energy levels based	on
optimized repeated unit of PCz2 and PCz411		

1. Synthesis of monomer 0f, 2f and 4f

A mixture of 3.6-dibromo-1,2-phenylenediamine (1.33 g, 5 mmol) and phthalic anhydride (0.74 g, 5 mmol) were stirred in glacial acetic acid under nitrogen at 120 °C for 3 hours. The precipitation was washed with water and methanol, dried under vacuum and refluxed in 2 mL of acetic anhydride under nitrogen for 6 h. the crude production was purified by column chromatography (silica gel, dichloromethane / petroleum ether = 2:1, v: v). The yellow monomer **0f** was obtained with yield of 1.36 g (72%).

A mixture of 3.6-dibromo-1,2-phenylenediamine (1.33 g, 5 mmol) and 4,5difluorophthalic anhydride (0.92 g, 5 mmol) were stirred in glacial acetic acid under nitrogen at 120 °C for 2 hours. The precipitation was washed with water and methanol, dried under vacuum and refluxed in 2 mL of acetic anhydride under nitrogen for 6 h. The crude production was purified by column chromatography (silica gel, dichloromethane / petroleum ether = 2:1, v: v) and afforded 1.58 g (76%) of yellow solid monomer **2f**.

A mixture of 3.6-dibromo-1,2-phenylenediamine (1.33 g, 5 mmol) and 4,5difluorophthalic anhydride (0.92 g, 5 mmol) were stirred in glacial acetic acid under nitrogen at 120 °C for 2 hours. The precipitation was washed with water and methanol, dried under vacuum and refluxed in 2 mL of acetic anhydride under nitrogen for 6 h. The crude production was purified by column chromatography (silica gel, dichloromethane / petroleum ether = 2:1, v: v) and afforded 1.47 g (65%) of yellow solid monomer **4f**.

2. FT-IR and ¹H-NMR of monomer 0f, 2f and 4f

In the case of IR spectrum, monomers exhibited similar characteristic bands around 1770 cm⁻¹ (C=O stretching), 1600 cm⁻¹ (C=C and C=N stretching). Note that the stretching vibrations of carbonyl groups in condensed cyclic γ -lactams would move to above 1760 cm⁻¹ in their IR spectra. ^[1] The C-X bonds don't usually possess a constant vibrational frequency nor do they always have unique absorption band features, which may lead to the difficulty of locating and recognizing their absorption. ^[2] Since the C-F stretching could exhibit two or more bands of polyfluorinated aliphatic hydrocarbons with a broad range of 1400-1000 cm⁻¹, ^[2] and compared with the nonfluorinated monomer 0f and with three polymers which possess no C-Br bond, the aromatic C-Br and C-F stretching bands of three monomers were assumed to be as follows:

0f: 1066 cm⁻¹ (C-Br)

2f: 1072 cm⁻¹ (C-Br); 1472 cm⁻¹and 1486 cm⁻¹ (C-F)

4f: 1083 cm⁻¹ (C-Br); 1494 cm⁻¹and 1519 cm⁻¹ (C-F)

¹ E. V. Gromachevskaya, A. V. Finko, A. V. Butin, K. S. Pushkareva, V. D. Strelkov, L. I. Isakova, G. D. Krapivin, *Chem. Heterocycl. Compd.* **2013**, *49*, 1331-1344.

² The Sadtler Handbook of Infrared Spectra, in: Sadtler Spectral Handbooks, Bio-Rad Laboratories, Inc,. Informatics Division.

¹H-NMR (400 MHz, CDCl₃), δ (ppm):

0f: 7.97 (d, 1 H), 7.87 (d, 1 H), 7.70 (td, 1 H), 7.59 (td, 1 H), 7.39–7.30 (m, 2 H). 2f: 7.80 (dd, 1 H), 7.70 (dd, 1 H), 7.42–7.39 (m, 2 H).

4f: 7.40 (m, 1 H)

3. FT-IR of polymer PCz0, PCz2 and PCz4

4. ¹H-NMR of polymer PCz0, PCz2 and PCz4

1.083 110 Onset Y = 97.918 % Onset X = 331.17 °C 100 0 90 -1 PCz0 80 -2 Onset Y = 68.576 % Onset X = 464.94 °C 70 8 60 Weight 20 -5-Vative . 40 Deri -6 30 -7 20 -8 10 -9 -9.572 0 100 200 300 400 Temperature (*C) 500 600 700 800 45 110 .4445 ----100 Onset Y = 98.895 % Onset X = 362.74 °C -5 90 PCz2 -10 80 70 1 . (%) % (%) 00 l -25 -22 40 Î 30 -30 V 20 -35 10 -40.52 0 44.95 100 200 300 400 Temperature (°C) 500 600 700 800 110 1.551 Onset Y = 92.296 % Onset X = 329.96 °C 100 0 90 PCz4 -2 80 70 -4 Weight % (%/min) V § 60 V -6 Weight 20 Derivative / -8 40 30 -10 20 -12 10 - -13.93 0 45 100 200 300 500 600 700 800 400 Temperature (*C)

5. Thermal gravimetric analyses of polymer PCz0, PCz2 and

PCz4

6. The ON/OFF current ratio of three memory devices

7. Illustration of molecular orbitals and the corresponding energy levels based on optimized repeated unit of PCz2 and PCz4.