Supporting Information

Selective Oxidation of Methacrolein to Methacrylic Acid over

H₄PMo₁₁VO₄₀/C₃N₄-SBA-15

Figure S1. FT-IR spectra of HPMV before calcination (HPMV) and after reaction (Used HPMV)

Figure S2. Small angle XRD patterns of SBA-15

Figure S3. CO₂-TPD curves of SBA-15, C_3N_4 and C_3N_4 -SBA

Figure S4. The SEM image of SBA-15 (a) and CN-SBA (b) and N dispersion of

CN-SBA (c)

Figure S5. FT-IR spectra of HPMV/CN-SBA catalysts before calcination with different HPMV loading amount. Catalysts were prepared at 80 °C with 2 h mixing

Figure S6. FT-IR spectra of HPMV/CN-SBA catalysts following calcinations with different HPMV loading. Catalysts were prepared at 80 °C with 2 hours mixing and calcined at 360 °C for 12 h)

Figure S7. FT-IR spectra of HPMV-CN-SBA catalysts post reaction with different HPMV loading. Catalysts were prepared at 80 °C with 2 h mixing and calcined at 360 °C for 12 h. MAL reaction conditions were: the volume percent (vol.%) of MAL, O₂ and H₂O in the reactant stream was 4.4, 11.1, and 17.8, with the

balance N₂ at 310 °C with 16 h.

Figure S8. FT-IR spectra of calcined 2HPMV/CN-SBA synthesized at different temperature. Catalysts were prepared at temperature ranging from 30-120 oC with 2 h mixing and calcined at 360 °C for 12 h. Catalysts synthesis temperature indicated by prefix to HPMV/CN-SBA

Figure S9. FT-IR spectra of calcined 2HPMV/CN-SBA synthesized with different mixing times. Catalysts were prepared at mixing times ranging from 2-24 h at a temperature of 80 °C and calcined at 360 °C for 12 h. Catalysts mixing time during synthesis indicated by prefix to HPMV/CN-SBA

20°

Figure S10. XRD patterns of supported catalysts with different supporting amount before (a) and after calcination (b) (quadrangular star, HPMV; arrow, V₂O₅;

 \triangle , MoO₃; \diamondsuit , (NH₄)xH_{4-x}PMo₁₁VO₄₀; \updownarrow , C₃N₄)

Figure S11. XRD patterns of HPMV/CN-SBA catalysts post-reaction with different HPMV loadings. Catalysts were prepared at 80 °C with 2 h mixing and calcined at 360 °C for 12 h. Reaction conditions were the volume percent (vol.%) of MAL, O_2 and H_2O in the reactant stream was 4.4, 11.1, and 17.8, with the balance N_2 at 310 °C with 16 h. Peak identification: quadrangular star = HPAV; arrow = V_2O_5 ;

$$\triangle = MoO_3; \diamondsuit = (NH_4)xH_{4-x}PMo_{11}VO_{40}; \leftrightharpoons = C_3N_4)$$

Figure S12. XRD patterns of calcined 2HPMV/CN-SBA synthesized at different temperatures. Catalysts were prepared at temperatures ranging from 30-120 °C with 2 h mixing and calcined at 360 °C for 12 h. Catalyst synthesis temperature indicated by

prefix to HPMV/CN-SBA. Peak identification: $\triangle = MoO_3$; $\diamondsuit = (NH_4)xH_4$.

$$_{x}PMo_{11}VO_{40}; \Leftrightarrow = C_{3}N_{4}$$

Figure S13. XRD patterns of calcined 2HPMV/CN-SBA synthesized with different mixing times. Catalysts were prepared at mixing times ranging from 2-24 h at a temperature of 80 °C and calcined at 360 °C for 12 h. Catalyst mixing time during synthesis indicated by prefix to HPMV/CN-SBA. Peak identification: $\triangle = MoO_3$; \diamondsuit

=
$$(NH_4)xH_{4-x}PMo_{11}VO_{40}$$
; $\stackrel{\wedge}{\simeq} = C_3N_4$

Catalysts	Crystalline diameter/nm
0.5HPAV/C ₃ N ₄ -SBA	24.4
1HPAV/C ₃ N ₄ -SBA	28.3
2HPAV/C ₃ N ₄ -SBA	59.8
3HPAV/C ₃ N ₄ -SBA	64.1
4HPAV/C ₃ N ₄ -SBA	28.4
5HPAV/C ₃ N ₄ -SBA	72.1
Calcined 0.5HPAV/C ₃ N ₄ -SBA	29.3
Calcined 1HPAV/C ₃ N ₄ -SBA	27.5
Calcined 2HPAV/C ₃ N ₄ -SBA	26.5
Calcined 3HPAV/C ₃ N ₄ -SBA	31.2
Calcined 4HPAV/C ₃ N ₄ -SBA	35.4
Calcined 5HPAV/C ₃ N ₄ -SBA	44.1

Table S1	Crystalline	diameter	of supported	catalvete
Table ST.	Crystannie	ulameter	of supported	catalysis

Used 0.5HPAV/C ₃ N ₄ -SBA	33.5
Used 1HPAV/C ₃ N ₄ -SBA	30.3
Used 2HPAV/C ₃ N ₄ -SBA	29.2
Used 3HPAV/C ₃ N ₄ -SBA	33.7
Used 4HPAV/C ₃ N ₄ -SBA	33.5
Used 5HPAV/C ₃ N ₄ -SBA	38.8
Calcined 4'HPAV/C ₃ N ₄ -SBA	26.3
Calcined 8'HPAV/C ₃ N ₄ -SBA	23.4
Calcined 12tHPAV/C3N4-SBA	31.4
Calcined 24tHPAV/C3N4-SBA	26.7
Calcined 30°HPAV/C ₃ N ₄ -SBA	29.4
Calcined 60°HPAV/C ₃ N ₄ -SBA	44.7
Calcined 100°HPAV/C ₃ N ₄ -SBA	46.2
Calcined 120°HPAV/C ₃ N ₄ -SBA	49.0

The crystalline diameters of supported catalysts was calculated by Scherrer formula, $D_{hkl} = k\lambda/\beta cos\theta_{hkl}$ (Where *k* is shape factor, cubic is 0.9; λ is the wavelength of X-ray (1.075 nm); β is FWHM (radian); θ_{hkl} is diffraction angle which is around 13° (radian).).

Figure S14. Nitrogen adsorption/desorption isotherms and (inset) pore size

distribution of SBA-15, CN-SBA and 2HPMV/CN-SBA

Figure S15. Nitrogen adsorption/desorption isotherms and (inset) pore size

Figure S16. Nitrogen adsorption/desorption isotherms and (inset) pore size distribution of calcined 1HPMV/CN-SBA

Figure S17. Nitrogen adsorption/desorption isotherms and (inset) pore size distribution of calcined 3HPMV/CN-SBA

Figure S18. Nitrogen adsorption/desorption isotherms and (inset) pore size distribution of calcined 4HPMV/CN-SBA

Figure S19. Nitrogen adsorption/desorption isotherms and (inset) pore size distribution of calcined 5HPMV/CN-SBA

Figure S20. SEM images of HPMV/CN-SBA catalysts with different HPMV loadings (a, a1) 0.5HPMV/CN-SBA, (b, b1) 1HPMV/CN-SBA, (c, c1) 2HPMV/CN-SBA (d, d1) 3HPMV/CN-SBA, (e, e1) 4HPMV/CN-SBA, (f, f1) 5HPMV/CN-SBA

Figure S21. TG-DTA curves of HPMV/CN-SBA catalysts with different HPMV loadings (a) 0.5HPMV/CN-SBA, (b) 1HPMV/CN-SBA, (c) 2HPMV/CN-SBA (d) 3HPMV/CN-SBA, (e) 4HPMV/CN-SBA, (f) 5HPMV/CN-SBA

Figure S22. XPS spectra of Si 2p for (a) CN-SBA, and 3HPMV/CN-SBA (b) before calcination, (c) after calcination and (d) post-reaction. Catalysts were prepared at 80 °C with 2 h mixing and calcined at 360 °C for 12 h. Reaction conditions were: the volume percent (vol.%) of MAL, O₂ and H₂O in the reactant stream was 4.4, 11.1,

Figure S23. XPS spectra of Mo 3d for 3HPAV/CN-SBA (a) before calcination,
(b) after calcination and (c) post-reaction. Catalysts were prepared at 80 °C with 2 h mixing and calcined at 360 °C for 12 h. Reaction conditions were: the volume percent (vol.%) of MAL, O₂ and H₂O in the reactant stream was 4.4, 11.1, and 17.8, with the balance N₂ at 310 °C with 16 h.

Figure S24. XPS spectra of XPS spectra of N 1s for (a) CN-SBA and 3HPMV/CN-SBA (b) before calcination, (c) after calcination and (d) post-reaction. Catalysts were prepared at 80 °C with 2 h mixing and calcined at 360 °C for 12 h. Reaction conditions were: the volume percent (vol.%) of MAL, O₂ and H₂O in the reactant stream was 4.4, 11.1, and 17.8, with the balance N₂ at 310 °C with 16 h.

Figure S25. XPS spectra of Mo 3d for 3HPMV/SBA (a) before calcination, (b)

after calcination and (c) post-reaction. Catalysts were prepared at 80 °C with 2 h mixing and calcined at 360 °C for 12 h. Reaction conditions were: the volume percent (vol.%) of MAL, O_2 and H_2O in the reactant stream was 4.4, 11.1, and 17.8, with the

Figure S26. XPS spectra of V 2p for HPMV/SBA (a) before calcination, (b) after calcination and (c) post-reaction. Catalysts were prepared at 80 °C with 2 h mixing and calcined at 360 °C for 12 h. Reaction conditions were: the volume percent (vol.%) of MAL, O₂ and H₂O in the reactant stream was 4.4, 11.1, and 17.8, with the balance

N₂ at 310 °C with 16 h.

Figure S27. XPS spectra of O 1s for HPAV/SBA (a) before calcination, (b) after

calcination and (c) post-reaction.

Table S2. Binding energies of N 1s, O1s, Mo 3d, V 2p and Si 2p for CN-SBA, 3HPMV/CN-SBA catalyst before calcinations, after calcinations or post-reaction

N 1s					
Catabasta	Peak1/	Pea	Pea	Pea	Area ratio of
Catalysis	eV	k2/eV	k3/eV	k4/eV	different peaks

CN-SBA	400.6	400. 0	399. 4	398. 6	5.3:1:5.6:3.2
3HPMV/CN- SBA	401.2			398. 8	1:20.2
Calcined 3HPMV/CN-SBA	401.7			398. 5	1:16.3
Post-reaction 3HPMV/CN-SBA	401.7			398. 6	1:17.5
V 2p					
Catalysts		Peak 1/eV	Peak 2/eV	Area ratio	of Peak 1 and Peak 2
3HPMV/CN-SBA		517.1	516.1		1.2:1
Calcined 3HPMV/CN-		517.2	516.1		1.8:1
SBA					
Used 3HPMV/CN-		517.4	516.5		1:1.3
SBA					
HPMV/SBA		517.60	516.70	2.0:1	
Calcined HPMV/SBA		517.56	516.81	1:1	
Post-reaction HPMV/SBA		517.51	516.65	1.1:1	
Mo 3d					
Catalysts		Peak	Peak	Area ratio	of Peak 1 and Peak 2
		1/eV	2/eV		
3HPMV/CN-SBA		232.8	231.6		144.3:1
Calcined 3HPMV/CN-		232.7			
SBA					
Used 3HPMV/CN-		232.8	231.6		40.3:1
SBA					
4HPMV/SBA		233.30	232.20	3:1	
Calcined 4HPMV/SBA	1	233.20	232.13	5.8:1	
Post-reaction 4HPMV/SBA		232.91	231.80		4.5:1
Si 2p					
Catalysts			Peak	: 1/eV	
CN-SI	BA			10	3.4
3HPMV/C	N-SBA	L .		10	3.4
Calcined 3HPM	IV/CN-	SBA		10	3.3
Post-reaction 3HI	PMV/C	N-SBA		10	3.4

Figure S29. MAL conversion and MAA selectivity over HPMV supported on KIT-6,
HY zeolite, TiO₂, Al₂O₃, CN-SBA, SBA-15, SiO₂, CNTs, NH3-CNTs at 290, 310 and
330 °C, respectively. The volume ratio of MAL, O₂ and H₂O in the reactant stream were 4.4 vol.%, 11.1 vol.%, 17.8 vol.%, respectively, N₂ balance.

Figure S30. MAL conversion and MAA selectivity over 0.5HPMV/CN-SBA, 1HPM/CN-SBA (1), 2HPMV/CN-SBA (2), 3HPMV/CN-SBA (3), 4HPMV/CN-SBA (4), 5HPMV/CN-SBA (5), HPMV, HPMV/SBA-15, NHPMV and NHPMV/SBA at (a) 310 °C and (b) 320 °C. The volume ratio of MAL, O₂ and H₂O in the reactant

Figure S31. Effect of synthesis temperature on MAL conversion and MAA selectivity over 2HPMV/CN-SBA at reaction temperatures of (a) 310 °C and (b) 320

Figure S32. Effect of mixing time during synthesis on MAL conversion and MAA selectivity over 2HPMV/CN-SBA at reaction temperatures of (a) 310 °C and (b)

320 °C. The volume ratio of MAL, O₂ and H₂O in the reactant stream were 4.4 vol.%, 11.1 vol.%, 17.8 vol.%, respectively, N₂ balance.

Figure S33. FT-IR spectra of NHPMV/SBA before calcination, after calcination and post-reaction. Catalysts were prepared at 80 °C with 2 h mixing and calcined at 360 °C for 12 h. Reaction conditions were: the volume percent (vol.%) of MAL, O₂ and H₂O in the reactant stream was 4.4, 11.1, and 17.8, with the balance N₂ at 310 °C with 16 h.

Figure S34. XRD patterns of NH₄PMV, NH₄PMV/SBA before calcination, after calcination and post-reaction. Catalysts were prepared at 80 °C with 2 h mixing and

calcined at 360 °C for 12 h. Reaction conditions were the volume percent (vol.%) of MAL, O₂ and H₂O in the reactant stream was 4.4, 11.1, and 17.8, with the balance N₂ at 310 °C with 16 h.. Peak identification: quadrangular star = HPAV \diamondsuit = (NH₄)xH₄.

Table S3. Weak and strong acid sites and amount of each for calcined neat HPMV, neat NH₄PMV and HPMV/CN-SBA catalysts with different HPMV loadings. Catalysts were prepared at 80 °C with 2 h mixing and calcined at 360 °C for 12 h.

Catalysts	Weak acid sites (°C)	Acid amount 1 (mmol/g)	Strong acid sites (°C)	Acid amount 2 (mmol/g)
0.5HPMV/CN-SBA	115	0.176	448	0.156
1HPMV/CN-SBA	116	0.151	445	0.287
2HPMV/CN-SBA	127	0.081	453	0.376
3HPMV/CN-SBA	113	0.127	456	0.373
4HPMV/CN-SBA	213	0.123	459	0.390
5HPMV /CN-SBA	110	0.167	459	0.410
HPMV	114	0.396	467	0.298
NH ₄ PMV	113	0.148	471	0.340

Table S4. (NH₄)_xH_{4-x}PMV crystal diameter for calcined HPMV/CN-SBA catalysts with different HPMV loadings. Catalysts were prepared at 80 °C with 2 h mixing and calcined at 360 °C for 12 h. Values determined from XRD profiles using Scherrer

Catalysts	Crystalline diameter/nm
0.5HPAV/C ₃ N ₄ -SBA	24.4
1HPAV/C ₃ N ₄ -SBA	28.3
2HPAV/C ₃ N ₄ -SBA	59.8
3HPAV/C ₃ N ₄ -SBA	64.1
4HPAV/C ₃ N ₄ -SBA	68.4
5HPAV/C ₃ N ₄ -SBA	72.1

equation.