## **Electronic Supplementary Information (ESI)**

# Dual-response detection of Ni<sup>2+</sup> and Cu<sup>2+</sup> ions by pyrazolopyrimidine-based fluorescent sensor and its application in bioimaging

Yun-Qiong Gu<sup>#b,c</sup>, Wen-Ying Shen<sup>#c</sup>, Yan Mi<sup>a</sup>, Yan-Fang Jing<sup>a</sup>, Jing-Mei Yuan<sup>c</sup>, Peng Yu<sup>b</sup>, Xiao-

Min Zhu<sup>c</sup>, Fei-Long Hu<sup>\*a</sup>

a Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning, 530006, China.

*b* School of Environment and Life Science, Nanning Normal University, Guangxi, Nanning, 530001, China.

c Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Guangxi Normal University), Ministry of Education of China

Correspondence and requests for materials should be addressed to F.L.H. (hflphd@163.com)

## **Table of Contents**

| Experimental section                                                                                    |
|---------------------------------------------------------------------------------------------------------|
| Fig. S1. The <sup>1</sup> H NMR (400 M, $d_6$ -DMSO) spectra of LS3                                     |
| Fig. S2. HRMS spectrum of ligand L                                                                      |
| Fig.S3. FT-IR spectra of L                                                                              |
| Table S1. Crystallographic data and refinements of L                                                    |
| Fig. S4. HRMS spectrum of complex <b>L-Cu<sup>2+</sup></b>                                              |
| Fig. S5. Calculation of detection limits of L for $Cu^{2+}$ (a) and $Ni^{2+}$ (b) in EtOH solution. The |
| spectra were recorded with excitation wavelength at 330 nm and emission wavelength at 494 nm.           |
| Fluorescence intensity is the sensor L solution (20 $\mu$ M) upon addition of different amounts of      |
| Cu <sup>2+</sup> / Ni <sup>2+</sup> , respectively                                                      |
| Table S2. Cytotoxicity of the tested compound L against different cell lines                            |

#### **1** Experimental section

#### 1.1 Single crystal X-ray diffraction analysis

Single crystal X-ray data for L was collected on a Bruker Apex II X-ray diffractomete equipped with Mo K $\alpha$  radiation ( $\lambda$ =0.71073 Å) at room temperature. The integrated intensity data for each reflection was collected by reduction of the data frames with the program Apex II. Hydrogen atoms were located in perfect positions and set riding on individual parent atoms. The structures were solved with the program *SHELXS-2014* and refined by full-matrix least squares on F<sup>2</sup> using the program *SHELXTL-2014*. All non-hydrogen atoms were refined with anisotropic thermal parameters. The parameters used intensity collection and refinements of L are summarized in Table S1. The CCDC code for L is 1936105.

#### **1.2 Job plot measurements**

L (11.08 mg,  $2 \times 10^{-3}$  M) was dissolved in ethanol (10 mL) and then 100, 90, 80, 70, 60, 50, 40, 30, 20, 10 or 0 µL aliquot of this solution was transferred to a vial and diluted with 2.9 mL of ethanol. The same concentration of CuCl<sub>2</sub> and NiCl<sub>2</sub> solutions was prepared with deionized water and a 0, 10, 20, 30, 40, 50, 60, 70, 80, 90 or 100 µL aliquot of CuCl<sub>2</sub> or NiCl<sub>2</sub> solutions was added to each diluted L solution. Each vial had a total volume of 3 mL. After stirring for one minute, the fluorescence spectrum was collected at room temperature. Job's plots were drawn by plotting  $\Delta I vs$ the mole fraction of metal ions, where  $\Delta I$ = change of fluorescence intensity at 494 nm.

### **1.3 Cytotoxicity Assay**

The cancer cells were seeded in 96-well culture plates ([ $(5 \times 10^3)/180 \mu$ L]/ well). Cells were cultured for 24 h to reach 70% confluence before treatment, and an amount of 20  $\mu$ L of tested various concentrations of compound L was added to each well. The final concentrations of the tested compound were 5  $\mu$ M, 10  $\mu$ M, 20  $\mu$ M, 50  $\mu$ M and 100  $\mu$ M, respectively. The microtiter plates were incubated in humidified atmosphere of 5% CO<sub>2</sub> and 95% air at 37 °C for another 48 h. Then freshly prepared 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) solution (10  $\mu$ L, 5 mg/mL) was added to each well for 4 h. Then the supernatant was removed, and DMSO (100  $\mu$ L) was added to dissolve the formazan crystals. The absorbance was read on a microplate reader at 490/630 nm. The cytotoxicity was assessed based on the percentage of cell survival compared with the negative control. The IC<sub>50</sub> values were calculated by the Bliss method (n = 5).



**Fig.S1.** The<sup>1</sup>H NMR (400 M,  $d_6$ -DMSO) spectra of 2-(3,5-Diphenyl-pyrazol-1-yl)-4-methyl-6,8-diphenyl-1,5,8a,9-tetraaza-fluorene (L)





Fig.S2.HRMS spectrum of ligand L



| Complex code                               | L                                 |  |  |  |
|--------------------------------------------|-----------------------------------|--|--|--|
| Chemical formula                           | $C_{37}H_{26}N_{6}$               |  |  |  |
| Formula Weight                             | 554.64                            |  |  |  |
| Temperature(K)                             | 296(2)                            |  |  |  |
| Wavelength(Å)                              | 0.71073                           |  |  |  |
| Crystal system, space group                | triclinic,P-1                     |  |  |  |
| a/b/c                                      | <i>a</i> =11.6231(19)Å            |  |  |  |
|                                            | <i>b</i> =11.723(4)Å              |  |  |  |
|                                            | c = 11.9007(19)Å                  |  |  |  |
| $\alpha/\beta/\gamma$                      | $\alpha = 98.741(3)^{\circ}$      |  |  |  |
|                                            | $\beta = 113.202(2)^{\circ}$      |  |  |  |
|                                            | $\gamma = 100.380(3)^{\circ}$     |  |  |  |
| Volume(Å <sup>3</sup> )                    | 1420.8(5)                         |  |  |  |
| Z, Caculated density(g.cm <sup>-3</sup> )  | 28, 1.408                         |  |  |  |
| Absorption coefficient (mm <sup>-1</sup> ) | 0.127                             |  |  |  |
| <i>F</i> (000)                             | 616.0                             |  |  |  |
| Crystal size (mm <sup>3</sup> )            | 0.310×0.270×0.200                 |  |  |  |
| Theta range for data collection            | 3.644 to 49.998                   |  |  |  |
| Limiting indices                           | $-13 \le h \le 12, -13 \le k \le$ |  |  |  |
|                                            | $13, -14 \le 1 \le 13$            |  |  |  |
| Reflections collected / unique             | 7785/4944[R(int)                  |  |  |  |
|                                            | =0.0214]                          |  |  |  |
| Completeness to theta $= 25.242$           | 98.6%                             |  |  |  |
| Refinement method                          | Full-matrix least-squares         |  |  |  |
|                                            | on F^2                            |  |  |  |
| Data/restraint/parameters                  | 4944/0/389                        |  |  |  |
| Goodness-of-fit on F^2                     | 0.977                             |  |  |  |
| Final R indices [I>2sigma(I)]              | $R_1 = 0.0458, wR_2 =$            |  |  |  |
|                                            | 0.1274                            |  |  |  |
| R (all data)                               | $R_1 = 0.0694, WR_2 =$            |  |  |  |
|                                            | 0.1451                            |  |  |  |
| Extinction coefficient                     | n/a                               |  |  |  |
| Largest diff. peak/hole(e/Å <sup>3</sup> ) | 0.514 and -0.352                  |  |  |  |

Fig.S3. FT-IR spectra of L

Table S1 Crystallographic data and refinements of complexes 1and2



Fig.S4.HRMS spectrum of Cu complex



Fig. S5. Calculation of detection limits of L for  $Cu^{2+}$  (a) and  $Ni^{2+}$  (b) in EtOH solution. The spectra were recorded with excitation wavelength at 330 nm and emission wavelength at 494 nm. Fluorescence intensity is the sensor L solution (20  $\mu$ M) upon addition of different amounts of  $Cu^{2+}/Ni^{2+}$ , respectively.

Eq. S1: The detection limit (DL) of Cu<sup>2+</sup> and Ni<sup>2+</sup>ions using sensor L was determined from the following equation:  $DL(Cu^{2+}) = 3\sigma/S = 3 \times 1.47 \times 10^{-6}/507.1 = 8.7 \times 10^{-9} \text{ M},$  $DL(Ni^{2+}) = 3\sigma/S = 3 \times 1.47 \times 10^{-6}/497.9 = 8.9 \times 10^{-9} \text{ M},$  respectively, where  $\sigma$  is the standard deviation of the blank solution (10 times); *S* is the slope of the calibration curve.

| T-24       | Hela       | HepG-2     | MGC-803    | A549       | H-460      | Skov-3     | HL-7702    |
|------------|------------|------------|------------|------------|------------|------------|------------|
| 39.94±1.35 | 31.11±0.96 | 36.14±2.30 | 30.14±2.42 | 39.59±1.59 | 31.73±1.97 | 38.19±1.68 | 31.18±2.26 |

Table S2. Cytotoxicity of the tested compound L against different cell lines (IC<sub>50</sub> in  $\mu$ M)