Supporting Information

1,1-Difluoroethyl Chloride (CH₃CF₂Cl), A Novel Difluoroalkylating Reagent for 1,1-Difluoroethylation of Arylboronic Acids

Jianchang Liu,^a Jida Zhang,^a Chaolin Wu,^a Hefu Liu,^a Hui Liu,^a Fenggang, Sun,^a Yueyun Li,^a Yuying Liu,^a Yunhui Dong,^a and Xinjin Li*^{a,b}

^a College of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo, 255000, China
^bKey Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China

Table of Contents

1. General Information and Materials	3
2. Optimization of Ni-Catalyzed Cross-Coupling of CH ₃ CH ₂ Cl with Aryl	boronic
Acids	5
3. The Role of DMAP	10
3.1 Preparation of NiCl ₂ (diOMebpy) and NiCl ₂ (DMAP) ₄	10
3.2 Reaction of Nickel complex with CH ₃ CF ₂ Cl	10
4. Radical Inhibition and Clock Experiments ^[a]	12
4.1 Radical inhibition experiment	12
4.2 Radical clock experiment	13
5.Experimental Procedures and Characterization Data	15
5.1 Ni-catalyzed cross-coupling of arylboronic acids with CH ₃ CF ₂ Cl	15
5.2 Ni-catalyzed cross-coupling of arylboronic acids with alkyl halides	21
6. References	27
7. ¹ H, ¹⁹ F and ¹³ C NMR Spectra of Isolated Products	28

1. General Information and Materials

General Information: ¹H, ¹³C and ¹⁹F NMR spectra were recorded on a 400 MHz NMR spectrometer. ¹H NMR spectroscopy chemical shifts were determined relative to internal Me₄Si (TMS) at δ 0.0 or to the signal of the residual protonated solvent CDCl₃ δ 7.26, ¹³C NMR spectroscopy chemical shifts were determined relative to internal TMS at δ 0.0. For the reaction mixtures, ¹⁹F NMR spectroscopy chemical shifts were determined relative to shifts were determined relative to PhCF₃ at δ –62.0. Data for ¹H, ¹³C and ¹⁹F NMR spectra are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, q = quartet, br = broad).

FT-IR spectra were obtained with a Nicolet 5700 spectrophotometer. GC-MS data were recorded on a Finnigan 4021 instrument and GCMS-QP2010. Melting points were recorded on a SGW X-4 melting point apparatus and are uncorrected. High resolution mass data were recorded on Waters Micromass GCT Premier and Bruker MicroTof Q II 10410.All reactions were monitored by TLC or ¹⁹F NMR spectroscopy.

Materials: All reagents were used as received from commercial sources and used without further purification. DME, 1,4-dioxane, DMF, MeCN and DCE were distilled under reduced pressure from CaH₂, and stored over activated molecular sieve. THF and toluene were distilled from sodium and benzophenone immediately before use. The anhydrous K₂CO₃ was ground into a fine powder and was dried in vacuo. DMAP was recrystallized from toluene before used. All (hetero)arylboronic acids were used from commercial suppliers.

Preparation of CH₃CH₂Cl Stock Solution: DME was added to a Schlenk tube under N₂ atomosphere. CH₃CH₂Cl gas was then slowly bubbled through the DME until the total volume of the solution reach the maximum. The concentration of the CH₃CH₂Cl stock solution was determined by ¹⁹F NMR using trifluorobenzene as an internal standard (generally 1.3 mol/L).

Preparation of PhCF₂Cl^[1]: Into a round-bottom teflon flask, was added a

magnetic stirrer and 20 g of Olah's reagent (HF 65-70%). Thereafter, 5g of PhCl₃ was slowly added to the HF-pyridine solution at 15°C, and then keep the reaction at 15-20 °C. A gas-outlet was placed on the top of the reaction flask for the purpose of HCl gas collection. The reaction mixture was stirred for 10 h and the progress of fluorination was monitored by GC-MS. After the reaction was finished, the reaction mixture was poured into iced water, and extracted with cold diethyl ether. The combined organic phase was washed with cold saturated NaHCO₃ aqueous solution and brine. After drying over MgSO₄ and solvent removal, the product was purified by distillation as a colorless oil (purity>95%, determined by ¹⁹FNMR). The impurities were mainly PhCF₃ and PhCFCl₂. ¹⁹F NMR (376 MHz, CDCl₃): δ –48.5 (s, 2F). GC-MS (*m/z*): 162 (M⁺), 127 (M⁺-Cl), 77 (M⁺-CF₂Cl).

2. Optimization of Ni-Catalyzed Cross-Coupling of CH₃CH₂Cl with Aryl boronic Acids

General procedure of optimization of Ni-catalyzed cross-coupling of CH_3CH_2Cl with aryl boronic acid (2a): To a 10 mL of Schlenk tube were added 4biphenylboronic acid (39.6 mg, 0.2 mmol, 1.0 equiv.), Nickel catalyst (1.5-7 mol%), ligand(1.5-7 mol%), base (1.5-4 equiv.) and additive (0.1-1.0 equiv.). The mixture was evacuated and backfilled with N₂ for three times, solvent (2 mL) and CH_3CF_2Cl (generally 1.3 mol/L in DME) were then added. The Schlenk tube was screw capped and put into a preheated oil bath (90-130 °C). After stirring for 5-12 h, the reaction mixture was cooled to room temperature and was purified with silica gel chromatography (petroleum ether) to give product **3a**.

Table S1. Optimization of Ligands^[a]

6

7

[a] Reaction conditions: 2a (0.2 mmol, 1.0 equiv.), 1a (2.6 mmol), DME (2 mL). [b] Isolated

phen

L5

trace

trace

yields.

	B(OH) ₂	L1 (5 mol%) NiCl ₂ (PPh ₃) ₂ (5 mol%) Additive (x mol%)	CF ₂ CH ₃
1a	Ph	K ₂ CO ₃ (2.0 equiv.)	Ph
Ia	2a	DME, 110 C, 31	3a
Entry	Additive (x m	ol%)	Yield ^[b] [%]
1	none		15
2	DMAP(10)		30
3	DMAP(30)		42
4	DMAP(50)		49
5	DMAP(70)		61
6	DMAP(100)		59
7	Ру (10)		trace
8	3-CNPy (10)		trace
9	4-CNPy (1	0)	trace
10	DMAP(70)+LiCl	(1.0 eq.)	58

Table S2. Optimization of Additives^[a]

[a] Reaction conditions: 2a (0.2 mmol,1.0 equiv.), 1a (2.6 mmol), DME (2 mL). [b] Isolated yields.

Table S3. Optimization of Ratio of Nickel Catalyst and Ligand ^[a]

		B(OH) ₂	NiCl ₂ (PPh ₃) ₂ (x mol%) L1 (y mol%) DMAP (70 mol%)	CF ₂ CH ₃
сп ₃ сг ₂ сі 1а	Ŧ	Ph 2a	K ₂ CO ₃ (2.0 equiv.) DME, 110 ^o C, 5h	Ph 3a
	Entry		x/y	Yield ^[b] [%]
	1		7/7	43
	2		5/5	61
	3		3/3	70
	4		1.5/1.5	63
	5		0/3	0
	6		3/0	trace

[a] Reaction conditions: 2a (0.2 mmol, 1.0 equiv.), 1a (2.6 mmol), DME (2 mL). [b] Isolated

yields.

	B(OH) ₂	[Ni] (3 mol%) L1 (3 mol%) DMAP (70 mol%)	CF ₂ CH ₃
оп _з ог ₂ сі + 1а	Ph 2a	K ₂ CO ₃ (2.0 equiv.) DME, 110 °C, 5h	Ph 3a
Entry		[Ni]	Yield ^[b] [%]
1	١	NiCl ₂ (PPh ₃) ₂	70
2		NiCl ₂ ·dppe	65
3]	NiCl ₂ ·DME	49
4		NiCl ₂	41
5	Ν	NiCl ₂ (PCy ₃) ₂	45
6	Ni	$(NO_3)_2 \cdot 6H_2O$	37

Table S4. Optimization of Nickel Catalyst^[a]

[a] Reaction conditions: 2a (0.2 mmol,1.0 equiv.), 1a (2.6 mmol), DME (2 mL). [b] Isolated yields.

Table S5. Optimization of Reaction Parameters ^[a]

	B(OH) ₂	NiCl ₂ (PPh ₃) L1 (3 n DMAP (7)	0₂ (3 mol%) nol%) 0 mol%)	CF ₂ CH ₃
Сн ₃ СF ₂ СI 1а	Ph 2a	K ₂ CO ₃ (2 DME, Te i	.0 equiv.) mp. Time	Ph 3a
Entry	CF ₂ CH ₃ Cl (equiv.)	Temp (⁰ C)	Time (h)	Yield ^[b] [%]
1	13	110	12	69
2	13	110	5	70
3	13	110	4	59
4	10	110	5	65
5	6	110	5	46
6	13	130	5	43

7	13	90	5	25
8	13	90	12	57

[a] Reaction conditions: 2a (0.2 mmol,1.0 equiv.), 1a (1.2-2.6 mmol), DME (2 mL). [b] Isolated yields.

Table S6. Optimization of Bases^[a]

CH₃CF₂CI +	NiCl ₂ (PPh ₃) ₂ (3 L1 (3 mol% B(OH) ₂ DMAP (70 mo	3 mol%) 6) 00%) CF_2CH_3
1a	Ph Base (x equi 2a DME, 110 °C	v.) _{Ph} , 5h 3a
Entry	Base(x equiv.)	Yield ^[b] [%]
1	K ₂ CO ₃ (1.5)	57
2	$K_2CO_3(2)$	70
3	$K_2CO_3(3)$	64
4	$K_2CO_3(4)$	51
5	LiO'Bu (2)	33
6	NaO'Bu (2)	nd
7	K ₃ PO ₄ (2)	29
8	$Na_2CO_3(2)$	9
9	$Cs_2CO_3(2)$	nd

[a] Reaction conditions: 2a (0.2 mmol,1.0 equiv.), 1a (2.6 mmol), DME (2 mL). [b] Isolated yields.

Table S7. Optimization of Solvents^[a]

	B(OH) ₂	NiCl ₂ (PPh ₃) ₂ (3 mol %) L1 (3 mol %) DMAP (70 mol %)	CF ₂ CH ₃
1a	Ph 2a	K ₂ CO ₃ (2.0 equiv) Solvent 2ml 110 °C, 5h	Ph 3a
Entr	у	Solvent	Yield[b][%]
1		DME	70
2		triglyme	34
3		1,4-dioxane	31
4		THF	25
5		NMP	nd
6		DMSO	nd
7		DMF	21

8	DCE	trace
9	toluene	trace
10	tert-butanol	8
11	MeCN	23

[a] Reaction conditions: 2a (0.2 mmol,1.0 equiv.), 1a (2 mmol, 10 equiv.) [b] Isolated yields.

Table S8.	The Effect of	H ₂ O on	the Ni-Cata	alvzed Rea	ction ^[a]
1 abit 50.	The Effect of	1120 01	inc m-Cat	aryzeu nea	cuon

CH ₃ CF ₂ CI	+ B(OH) ₂ B(OH) ₂ (3 mol %) L1 (3 mol %) DMAP (70 mol %)	CF ₂ CH ₃
1a	Ph K ₂ CO ₃ (2.0 equiv) Ph 2a DME, 110 °C, 5h	3a
Entry	Solvent	Yield ^[b] [%]
1	DME (without further purification)	70
2	DME (distilled from CaH ₂)	69
3	Add $H_2O(1.0 \text{ equiv.})$ to DME (without further purification)	66

[a] Reaction conditions: 2a (0.2 mmol,1.0 equiv.), 1a (2.6 mmol), DME (2 mL). [b] Isolated yields.

Table S9. The Effect of Ligands with DMAP^[a]

	B(OH) ₂	NiCl ₂ (PPh ₃) ₂ (3 mol %) Ligand (3 mol %) DMAP (70 mol %)		.CF ₂ CH ₃
1a	Ph 2a	K ₂ CO ₃ (2.0 equiv) DME, 110 ^o C, 5h	Ph 3a	
	G N N	G L1, G = OMe L2, G = NH ₂ L3, G = ^t Bu		
Entry		Ligand		Yield ^[b] [%]
1		L1		70
2		L2		24
3		L3		61

[a] Reaction conditions: 2a (0.2 mmol,1.0 equiv.), 1a (2.6 mmol), DME (2 mL). [b] Isolated yields.

3. The Role of DMAP

3.1 Preparation of NiCl₂(diOMebpy) and NiCl₂(DMAP)₄

Preparation of NiCl₂(diOMebpy) ^[2]: To a solution of NiCl₂ (65 mg, 0.5 mmol) in ethanol (10 mL) was added a solution of 4,4'-diOMebpy (108 mg, 0.5 mmol) in ethanol (10 mL). The reaction mixture was refluxed with stirring for 10 h. The yellow solution slowly became green. The solution was filtrated and the filtrate was evaporated in vacuo to give a crude product NiCl₂(diOMebpy) 152mg (88% yield). The crude product was recrystallized from methanol.

NiCl₂•DME + DMAP
$$\longrightarrow$$
 NiCl₂(DMAP)₄

Preparation of NiCl₂(DMAP)⁴ ^[2]: To a stirring solution of DMAP (293 mg, 2.4 mmol) in MeOH (5 mL) was added dropwise a solution of NiCl₂·DME (66 mg, 0.3 mmol) in MeOH (5 mL). After the reaction mixture was stirred at room temperature for another 6 h, the solution was filtrated. The filtrate was evaporated in vacuo to give a blue solid NiCl₂(DMAP)₄ 172 mg (93% yield). The crude product was recrystallized from methanol.

3.2 Reaction of Nickel complex with CH₃CF₂Cl

Procedure: To a 10 mL of Schlenk tube were added 4-biphenylboronic acid (39.6 mg, 0.2 mmol, 1.0 equiv.), NiCl₂(diOMebpy) (2 mg, 3 mol%), K₂CO₃ (55.2 mg, 2.0 equiv.), DMAP(70 mol% or none). The mixture was evacuated and backfilled with N₂ for three times, DME (2 mL) and CH₃CF₂Cl (generally 1.3 mol/L in DME) were then

added. The Schlenk tube was screw capped and put into a preheated oil bath (110 °C). After stirring for 5h, the reaction mixture was cooled to room temperature and was purified with silica gel chromatography (petroleum ether) to give product 3a.

Procedure: To a 10 mL of Schlenk tube were added 4-biphenylboronic acid (39.6 mg, 0.2 mmol, 1.0 equiv.), NiCl₂(DMAP)₄ (3.7 mg, 3 mol%), L1 (3 mol% or none), K_2CO_3 (55.2mg, 2.0 equiv.). The mixture was evacuated and backfilled with N₂ for three times, DME (2 mL) and CH₃CF₂Cl (generally 1.3 mol/L in DME) were then added. The Schlenk tube was screw capped and put into a preheated oil bath (110 °C). After stirring for 5h, the reaction mixture was cooled to room temperature and was purified with silica gel chromatography (petroleum ether) to give product **3a**.

Procedure: To a 10 mL of Schlenk tube were added 4-biphenylboronic acid (39.6 mg, 0.2 mmol, 1.0 equiv.), NiCl₂(DMAP)₄ (3.7 mg, 3 mol%), L1 (1.3 mg, 3 mol%), K₂CO₃ (55.2 mg, 2.0 equiv.), DMAP(14.1mg, 58 mol%). The mixture was evacuated and backfilled with N₂ for three times, DME (2 mL) and CH₃CF₂Cl (generally 1.3 mol/L in DME) were then added. The Schlenk tube was screw capped and put into a preheated oil bath (110 °C). After stirring for 5h, the reaction mixture was cooled to room temperature and was purified with silica gel chromatography (petroleum ether) to give product **3a** 22mg (50% yield).

4. Radical Inhibition and Clock Experiments^[a]

4.1 Radical inhibition experiment

Procedure: To a 10 mL of Schlenk tube were added 4-biphenylboronic acid (39.6 mg, 0.2 mmol, 1.0 equiv.), NiCl₂(PPh₃)₂ (3.9 mg, 3 mol%), L1 (1.3 mg, 3 mol%), K_2CO_3 (55.2mg, 2.0 equiv.) DMAP (17.1 mg, 70 mol%) and TEMPO (31.2 mg, 1.0 equiv.). The mixture was evacuated and backfilled with N₂ for three times, DME (2 mL) and CH₃CF₂Cl (generally 1.3 mol/L in DME) were then added. The Schlenk tube was screw capped and put into a preheated oil bath (110 °C). After stirring for 5h, the reaction mixture was cooled to room temperature. The yield was determined by ¹⁹F NMR spectroscopy using PhCF₃ as an internal standard.

Figure S1. GC-MS analysis of adding TEMPO to Standard reaction conditions

Figure S2. ¹⁹F NMR analysis of adding TEMPO to standard reaction conditions

4.2 Radical clock experiment

Procedure: To a 10 mL of Schlenk tube were added 4-biphenylboronic acid (39.6 mg, 0.2 mmol, 1.0 equiv.), NiCl₂(PPh₃)₂ (3.9 mg, 3 mol%), L1 (1.3 mg, 3 mol%), K_2CO_3 (55.2 mg, 2.0 equiv.), DMAP(17.1 mg, 70 mol%) and allyl ether (19.6 mg, 1.0 equiv.). The mixture was evacuated and backfilled with N₂ for three times, DME (2 mL) and CH₃CF₂Cl (generally 1.3 mol/L in DME) were then added. The Schlenk tube was screw capped and put into a preheated oil bath (110 °C). After stirring for 5h, the reaction mixture was cooled to room temperature. The yield was determined by ¹⁹F NMR spectroscopy using PhCF₃ as an internal standard.

Figure S3. GC-MS analysis of adding allyl ether to standard reaction conditions

Figure S4. ¹⁹F NMR analysis of adding allyl ether to standard reaction conditions

5. Experimental Procedures and Characterization Data

5.1 Ni-catalyzed cross-coupling of arylboronic acids with CH₃CF₂Cl.

Typical Experiment Procedure: To a 10 mL of Schlenk tube were added arylboronic acid (0.2 mmol, 1.0 equiv.), NiCl₂(PPh₃)₃ (3.9 mg, 3 mol%), L1 (1.3 mg, 3 mol%), K₂CO₃ (55.2 mg, 2.0 equiv.), DMAP(17.1 mg, 70 mol%). The mixture was evacuated and backfilled with N₂ for three times, DME (2 mL) and CH₃CF₂Cl (generally 1.3 mol/L in DME) were then added. The Schlenk tube was screw capped and put into a preheated oil bath (110 °C). After stirring for 5 h, the reaction mixture was cooled to room temperature and purified by silica gel chromatography to give product.

4-(1,1-Difluoroethyl)-1,1'-biphenyl (3a)^[3]

For 0.2 mmol scale, the standard procedure of method was followed to provide **3a** by column chromatography on silica gel (petroleum ether) as a white solid (31 mg, 70%). M.p.: 62–64 °C. IR (KBr): 3080, 3032, 3006 , 1680, 1488, 1388, 1305, 1166, 1112, 921, 766, 692, 581 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.65-7.57 (m, 6H), 7.45 (t, *J* = 7.2 Hz, 2H), 7.40-7.36 (m, 1H),1.96 (t, *J* = 18.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃): -87.2 (q, *J* = 18.0 Hz, 2F). GC-MS (*m*/*z*): 218 (M⁺), 203 (M⁺–CH₃), 153 (M⁺–CF₂–CH₃).

3-(1,1-Difluoroethyl)-1,1'-biphenyl (3b)^[3]

For 0.2 mmol scale, the standard procedure of method was followed to provide **3b** by column chromatography on silica gel (petroleum ether) as a colorless oil (24 mg, 54%). IR (thin film): 3061, 3003, 2927, 1483, 1384, 1316, 1178, 929, 759, 704,

599cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.72 (s, 1H), 7.64-7.63 (m, 1H), 7.59 (d, J = 8.0 Hz, 2H), 7.49-7.43 (m, 4H), 7.37 (t, J = 7.4 Hz, 1H), 1.96 (t, J = 18.2Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃): δ -87.6 (q, J = 18.0 Hz, 2F). ¹³C NMR (100 MHz, CDCl₃): δ 141.6, 140.5, 138.7 (t, ² $J_{C-F} = 26.4$ Hz), 129.0, 128.9, 128.5, 127.7, 127.3, 123.52 (t, ³ $J_{C-F} = 6.2$ Hz), 123.48 (t, ³ $J_{C-F} = 5.8$ Hz), 121.9 (t, ¹ $J_{C-F} = 237.7$ Hz), 26.1 (t, ² $J_{C-F} = 29.7$ Hz).

5'-(1,1-Difluoroethyl)-1,1':3',1''-terphenyl (3c)

For 0.2 mmol scale, the standard procedure of method was followed to provide **3c** by column chromatography on silica gel (petroleum ether) as a colorless oil (23 mg, 39%). IR (thin film): 3061, 3037, 2854, 1599, 1433, 1254, 1179, 1144, 930, 759, 698 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.86 (s, 1H), 7.71 (s, 2H), 7.67, (d, *J* = 7.2 Hz, 4H), 7.49 (t, *J* = 7.2 Hz, 4H), 7.41 (t, *J* = 7.2 Hz, 2H), 2.00 (t, *J* = 18.0 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃): δ -87.6 (q, *J* = 18.2 Hz, 2F). ¹³C NMR (100 MHz, CDCl₃): δ 142.3, 140.5, 139.3 (t, ²*J*_{C-F} = 26.3 Hz), 128.9, 127.9 127.4, 127.3, 122.4 (t, ³*J*_{C-F} = 6.0 Hz), 121.9 (t, ¹*J*_{C-F} = 238.0 Hz), 26.2 (t, ²*J*_{C-F} = 29.7). GC-MS (*m*/*z*): 294 (M⁺), 279 (M⁺-CH₃). HRMS (EI): calcd. For C₂₀H₁₆F₂ (M⁺): 294.1220, found: 294.1223.

4-(4-(1,1-Difluoroethyl)phenyl)morpholine (3h)

For 0.2 mmol scale, the standard procedure of method was followed to provide **3h** by column chromatography on silica gel (petroleum ether/EtOAc = 20:1) as a white solid (12 mg, 28%). M.p.: 56-58 °C. IR (KBr): 2965, 2861, 1615, 1521, 1385, 1239, 1115, 925, 828, 622, 579 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.41 (d, *J* = 8.4 Hz, 2H), 6.91 (d, *J* = 8.8 Hz, 2H), 3.87 (t, *J* = 4.8 Hz, 4H), 3.2 (t, *J* = 5.0 Hz, 4H), 1.91 (t,

J = 18.0 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃): δ -85.4 (q, J = 18.0 Hz, 2F). ¹³C NMR (100 MHz, CDCl₃): δ 152.1 129.1 (t, ² $J_{C-F} = 26.9$ Hz), 125.8 (t, ³ $J_{C-F} = 5.9$ Hz), 122.1 (t, ¹ $J_{C-F} = 236.2$ Hz), 114.8, 66.8, 48.7, 25.8 (t, ² $J_{C-F} = 30.3$ Hz). GC-MS (*m*/*z*): 227 (M⁺), 65 (CF₂CH₃⁺). HRMS (EI): calcd. For C₁₂H₁₅F₂NO (M⁺): 227.1122, found: 227.1128.

9-(4-(1,1-Difluoroethyl)phenyl)-9H-carbazole (3j)

For 0.2 mmol scale, the standard procedure of method was followed to provide **3j** by column chromatography on silica gel (petroleum ether) as a white solid (38 mg, 62%). M.p.: 150–152 °C. IR (KBr): 3250, 3003, 1610, 1517, 1453, 1295, 1232, 1175, 907, 752, 628, 570 cm⁻¹.¹H NMR (400 MHz, CDCl₃): δ 8.17 (d, *J* = 7.6 Hz, 2H), 7.76 (d, *J* = 8.4 Hz, 2H), 7.66 (d, *J* = 8.4 Hz, 2H), 7.46-7.41 (m, 4H), 7.34-7.30 (m, 2H), 2.05 (t, *J* = 18.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃): δ -87.2 (q, *J* = 18.2 Hz, 2F). ¹³C NMR (100 MHz, CDCl₃): δ 140.6, 139.1, 137.1 (t, ²*J*_{C-F} = 26.9 Hz), 127.0, 126.4 (t, ³*J*_{C-F} = 5.9 Hz), 126.1, 123.6, 121.7 (t, ¹*J*_{C-F} = 237.6 Hz), 120.4, 120.3, 109.7, 26.0 (t, ²*J*_{C-F} = 29.7 Hz). GC-MS (*m*/*z*): 307 (M⁺), 292 (M⁺-CH₃), 242 (M⁺-CF₂-CH₃), 65 (CF₂CH₃⁺). HRMS (ESI): calcd. For C₂₀H₁₆F₂N (M+H)⁺: 308.1251, found: 308.1254.

1-(3-(1,1-Difluoroethyl)phenyl)naphthalene (3k)

For 0.2 mmol scale, the standard procedure of method was followed to provide 3k

by column chromatography on silica gel (petroleum ether) as a colorless oil (12 mg, 26%). IR (thin film): 3060, 2927, 1591, 1509, 1394, 1313, 1180, 1083, 928, 798, 708, 601 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.94-7.84 (m, 3H), 7.65 (s, 1H), 7.60-7.43 (m, 7H), 1.99 (t, J = 18.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃): δ -87.3 (q, J = 18.2 Hz, 2F). ¹³C NMR (100 MHz, CDCl₃): δ 141.1, 139.4, 138.3 (t, ² $J_{C-F} = 26.4$ Hz), 133.8, 131.5, 131.4, 128.5, 128.4, 128.1, 127.1, 126.3 (t, ³ $J_{C-F} = 5.9$ Hz), 126.0, 125.7, 125.4, 123.5 (t, ³ $J_{C-F} = 5.9$ Hz), 121.9 (t, ¹ $J_{C-F} = 237.6$ Hz), 26.1 (t, ² $J_{C-F} = 29.7$ Hz). GC-MS (m/z): 268 (M⁺), 203 (M⁺–CF₂–CH₃). HRMS (EI): calcd. For C₁₈H₁₄F₂ (M⁺): 268.1064, found: 268.1071.

2-(4-(1,1-Difluoroethyl)phenyl)-1-phenyl-1H-benzo[d]imidazole (31)

For 0.2 mmol scale, the standard procedure of method was followed to provide **31** by column chromatography on silica gel (DCM) as a white solid (11 mg, 16%). M.p.: 98-100 °C. IR (KBr): 3060, 2927, 1509, 1394, 1266, 1180, 1083, 928, 798, 779, 708, 601 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.90 (d, *J* = 7.6 Hz, 1H), 7.63 (d, *J* = 8.4 Hz, 2H), 7.55-7.50 (m, 3H), 7.44 (d, *J* = 8.4 Hz, 2H), 7.38-7.25 (m, 5H), 1.90 (t, *J* = 18.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃): δ -88.0 (q, *J* = 18.2 Hz, 2F). ¹³C NMR (100 MHz, CDCl₃): δ -88.0 (t, ²*J*_{C-F} = 26.7 Hz), 137.3, 136.8, 131.4, 130.0, 129.5, 128.8, 127.4, 124.7 (t, ³*J*_{C-F} = 5.9 Hz), 123.7, 123.2, 121.6 (t, ¹*J*_{C-F} = 237.8 Hz), 120.0, 110.6, 25.9 (t, ²*J*_{C-F} = 29.5 Hz). GC-MS (*m*/*z*): 334 (M⁺) . HRMS (ESI): calcd. For C₂₁H₁₇F₂N₂ (M+H)⁺: 335.1360, found: 335.1371.

4-(1,1-Difluoroethyl)-4'-ethyl-1,1'-biphenyl (3m)

For 0.2 mmol scale, the standard procedure of method was followed to provide **3m** by column chromatography on silica gel (petroleum ether) as a white solid (30 mg, 61%). M.p.: 107–109 °C. IR (KBr):2966, 2931, 2874, 1613, 1501, 1398, 1300, 1176, 1124, 918, 821, 651, 573 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.63 (d, *J* = 8.4 Hz, 2H), 7.58-7.52 (m, 4H), 7.30 (d, *J* = 8.4 Hz, 2H), 2.71 (q, *J* = 7.6 Hz, 2H), 1.96 (t, *J* = 18.0 Hz, 3H), 1.29 (t, *J* = 7.6 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃): δ -87.2 (q, *J* = 18.2 Hz, 2F). ¹³C NMR (100 MHz, CDCl₃): δ 144.0, 142.6, 137.6, 136.7 (t, ²*J*_{C-F} = 26.6 Hz), 128.4, 127.1, 127.0, 125.1 (t, ³*J*_{C-F} = 5.9 Hz), 122.0 (t, ¹*J*_{C-F} = 237.2 Hz), 28.6, 26.0 (t, ²*J*_{C-F} = 29.9 Hz), 15.6. GC-MS (*m*/*z*): 246 (M⁺), 231 (M⁺–CH₃), 181 (M⁺–CF₂–CH₃), 65 (CF₂CH₃⁺). HRMS (EI): calcd. For C₁₆H₁₆F₂ (M⁺): 246.1220, found: 246.1221.

2-(4-(1,1-Difluoroethyl)phenyl)naphthalene (3n)

For 0.2 mmol scale, the standard procedure of method was followed to provide **3n** by column chromatography on silica gel (petroleum ether) as a white solid (29 mg, 55%). M.p.: 115–117 °C. IR (KBr): 3056, 2925, 1734, 1388, 1304, 1111, 922, 818, 748, 585, 477 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 8.07 (s, 1H), 7.96-7.88 (m, 3H), 7.79-7.74, (m, 3H), 7.64 (d, *J* = 8.4 Hz, 2H), 7.56–7.50 (m, 2H), 2.00 (t, *J* = 18.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃): δ -87.3 (q, *J* = 18.0 Hz, 2F). ¹³C NMR (100 MHz, CDCl₃): δ 142.6, 137.6, 137.1 (t, ²*J*_{C-F} = 26.6 Hz), 133.6, 132.8, 128.6, 128.3, 127.7, 127.5, 126.5, 126.3, 126.1, 125.4, 125.2 (t, ³*J*_{C-F} = 5.8 Hz), 122.0 (t, ¹*J*_{C-F} = 237.3 Hz), 26.0 (t, ²*J*_{C-F} = 29.8 Hz). GC-MS (*m*/*z*): 268 (M⁺), 253(M⁺–CH₃), 65 (CF₂CH₃⁺). HRMS (EI): calcd. For C₁₈H₁₄F₂ (M⁺): 268.1064, found: 268.1068.

4-(1,1-Difluoroethyl)-4'-(pentyloxy)-1,1'-biphenyl (30)

For 0.2 mmol scale, the standard procedure of method was followed to provide **30** by column chromatography on silica gel (petroleum ether) as a white solid (31 mg, 51%). M.p.: 117–119 °C. IR (KBr): 2957, 2875, 1606, 1501, 1385, 1305, 1171, 1130, 1051, 922, 820, 604, 536 cm⁻¹.¹H NMR (400 MHz, CDCl₃): δ 7.61-7.51 (m, 6H), 6.98 (d, *J* = 8.8 Hz, 2H), 4.01 (t, *J* = 6.6 Hz, 2H), 1.96 (t, *J* = 18.0 Hz, 3H), 1.86-1.79 (m, 2H), 1.51-1.36 (m, 4H), 0.95 (t, *J* = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃): δ - 87.1 (q, *J* = 18.0 Hz, 2F). ¹³C NMR (100 MHz, CDCl₃): δ 159.1, 142.3, 136.3 (t, ²*J*_{C-F} = 26.6 Hz), 132.5, 128.2, 126.7, 125.1 (t, ³*J*_{C-F} = 5.9 Hz), 122.0 (t, ¹*J*_{C-F} = 237.1 Hz), 114.9, 68.1, 29.0, 28.2, 26.0 (t, ²*J*_{C-F} = 29.9 Hz), 22.5, 14.1. GC-MS (*m*/*z*): 304 (M⁺), 233 (M⁺-C₅H₁₁). HRMS (EI): calcd. For C₂₀H₁₆F₂ (M⁺): 304.1639, found: 304.1635.

Typical Experiment Procedure for highly volatile products: To a 10 mL of Schlenk tube were added arylboronic acid (0.2 mmol, 1.0 equiv.), NiCl₂(PPh₃)₃ (3.9 mg, 3 mol%), **L1** (1.3 mg, 3 mol%), K₂CO₃ (55.2 mg, 2.0 equiv.), DMAP(17.1 mg, 70 mol%). The mixture was evacuated and backfilled with N₂ for three times, DME (2 mL) and CH₃CF₂Cl (generally 1.3 mol/L in DME) were then added. The Schlenk tube was screw capped and put into a preheated oil bath (110 °C). After stirring for 5h, the reaction mixture was cooled to room temperature. The yield was determined by ¹⁹F NMR spectroscopy using PhCF₃ as an internal standard.

1-(1,1-difluoroethyl)-4-methylbenzene (3d)^[4]

For 0.2 mmol scale, the yield (34%) was determined by ¹⁹F NMR spectroscopy using PhCF₃ as an internal standard. Characterization of **3d** in reaction solution: ¹⁹F NMR (376 MHz, CDCl₃): δ -86.1 (q, *J* = 17.9 Hz, 2F). GC-MS (*m/z*):156 (M⁺), 141

1-(1,1-difluoroethyl)-4-(trifluoromethoxy)benzene (3g)

For 0.2 mmol scale, the yield (35%) was determined by ¹⁹F NMR spectroscopy using PhCF₃ as an internal standard. Characterization of **3g** in reaction solution: ¹⁹F NMR (376 MHz, CDCl₃): δ -57.2 (s, 3F), -86.7 (q, *J* = 18.2 Hz, 2F). GC-MS (*m/z*): 226 (M⁺), 211 (M⁺–CH₃).

1-(1,1-difluoroethyl)-4-methoxybenzene (3e) [4]

For 0.2 mmol scale, the yield (33%) was determined by ¹⁹F NMR spectroscopy using PhCF₃ as an internal standard. Characterization of **3e** in reaction solution: ¹⁹F NMR (376 MHz, CDCl₃): δ -84.8 (q, *J* = 17.9 Hz, 2F). GC-MS (*m/z*): 172 (M⁺), 65 (CF₂CH₃⁺).

5-(1,1-difluoroethyl)-2-methoxypyridine (3i)

For 0.2 mmol scale, the yield (27%) was determined by ¹⁹F NMR spectroscopy using PhCF₃ as an internal standard. Characterization of **3i** in reaction solution: ¹⁹F NMR (376 MHz, CDCl₃): δ -86.3 (q, *J* = 18.4 Hz, 2F). GC-MS (*m/z*): 173 (M⁺), 158 (M⁺-CH₃).

1-(1,1-difluoroethyl)-4-(trifluoromethyl)benzene (3f)^[4]

For 0.2 mmol scale, the yield (40%) was determined by ¹⁹F NMR spectroscopy using PhCF₃ as an internal standard. Characterization of **3f** in reaction solution: ¹⁹F NMR (376 MHz, CDCl₃): δ -62.2 (s, 3F), -87.7 (q, *J* = 18.2 Hz, 2F). GC-MS (*m/z*): 210 (M⁺), 195 (M⁺–CH₃), 145 (M⁺–CF₂–CH₃).

5.2 Ni-catalyzed cross-coupling of arylboronic acids with alkyl halides.

Procedure: To a 10 mL of Schlenk tube were added arylboronic acid (0.2 mmol, 1.0 equiv.), NiCl₂(PPh₃)₃ (3.9 mg, 3 mol%), L1 (1.3 mg, 3 mol%), K₂CO₃ (55.2 mg, 2.0 equiv.), DMAP (17.1 mg, 70 mol%). The mixture was evacuated and backfilled with N₂ for three times, DME (2 mL) and CF₂HCl (generally 10.0 equiv) were then added. The Schlenk tube was screw capped and put into a preheated oil bath (110 °C). After stirring for 5 h, the reaction mixture was cooled to room temperature and purified by silica gel chromatography to give product.

4-(Difluoromethyl)-1,1'-biphenyl (4a)^[3]

For 0.2 mmol scale, the standard procedure of method was followed to provide **4a** by column chromatography on silica gel (petroleum ether) as a white solid (20 mg, 50%). M.p:70-72 °C. IR (KBr): 3059, 2965, 1614, 1488, 1380, 1226, 1077, 1025,839 766, 694 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.68 (d, *J* = 8.0 Hz, 2H), 7.60 (t, *J* = 7.2 Hz, 4H), 7.48 (t, *J* = 7.4 Hz, 2H), 7.40 (t, *J* = 7.4 Hz, 1H), 6.71, (t, *J* = 56.6 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃): δ -110.3 (d, *J* = 56.4 Hz, 2F). GC-MS (*m*/*z*): 204 (M⁺), 127 (M⁺-Ph).

3-(Difluoromethyl)-1,1'-biphenyl (4b)^[3]

For 0.2 mmol scale, the standard procedure of method was followed to provide **4b** by column chromatography on silica gel (petroleum ether) as a colorless oil (12 mg, 29%). IR (thin film): 3359, 3063, 2921, 1481, 1370, 1120, 1030, 899, 804, 759, 700, 615, 550 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.73-7.72 (m, 2H), 7.61 (d, *J* = 7.6 Hz, 2H), 7.56-7.45 (m, 4H), 7.39 (t, *J* = 7.4 Hz, 1H), 6.72 (t, *J* = 56.6 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃): δ -110.6 (d, *J* = 56.4 Hz, 2F). GC-MS (*m*/*z*): 204 (M⁺), 153(M⁺-CF₂H), 127 (M⁺-Ph),

4-(Difluoromethyl)-4'-ethyl-1,1'-biphenyl (4c)

For 0.2 mmol scale, the standard procedure of method was followed to provide **4c** by column chromatography on silica gel (petroleum ether) as a white solid (21 mg, 46%). M.p.:102-104 °C. IR (KBr):3031, 2970, 2878, 1611, 1500, 1402, 1075, 1026, 818, 730, 552, 521 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.69 (d, *J* = 8.0 Hz, 2H), 7.60-7.54 (m, 4H), 7.33 (*J* = 8.0 Hz, 2H), 6.71 (t, *J* = 56.6 Hz, 1H), 2.74 (q, *J* = 7.6 Hz, 2H), 1.31 (t, *J* = 7.6 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃): δ -110.2 (d, *J* = 56.6 Hz, 2F). ¹³C NMR (100 MHz, CDCl₃): δ 144.2, 143.7, 137.5, 132.9 (t, ²*J*_{C-F} = 22.3 Hz), 128.5, 127.3, 127.2, 126.0 (t, ³*J*_{C-F} = 5.9 Hz), 114.8 (t, ¹*J*_{C-F} = 236.9 Hz), 28.6, 15.6. GC-MS (*m*/*z*): 232 (M⁺), 217 (M⁺-CH₃), 181 (M⁺-CF₂H). HRMS (EI): calcd. For C₁₅H₁₄F₂ (M⁺): 232.1064, found: 232.1067.

4-(Difluoro(phenyl)methyl)-1,1'-biphenyl (4d)^[5]

To a 10 mL of Schlenk tube were added 4-biphenylboronic acid (39.6 mg, 0.2 mmol, 1.0 equiv.), NiCl₂(PPh₃)₃ (3.9 mg, 3 mol%), L1 (1.3 mg, 3 mol%), K₂CO₃ (55.2 mg, 2.0 equiv.), DMAP (17.1 mg, 70 mol%). The mixture was evacuated and

backfilled with N₂ for three times, DME (2 mL) and PhCF₂Cl (162 mg, 175 µl 5.0 equiv.) were then added. The Schlenk tube was screw capped and put into a preheated oil bath (110 °C). After stirring for 5h, the reaction mixture was cooled to room temperature and purified by column chromatography on silica gel (petroleum ether) to product **4d** that a white solid (6 mg, 11%). M.p.: 78-80 °C. IR (KBr): 3450, 3345, 3064, 2922, 2851, 1450, 1272, 1236, 1047, 961, 838, 755, 696, 607 cm⁻¹.¹H NMR (400 MHz, CDCl₃): δ 7.64 (d, J = 8.4 Hz, 2H), 7.60-7.55 (m, 6H), 7.48-7.44 (m, 5H), 7.38 (t, J = 7.2 Hz, 1H), ¹⁹F NMR (376 MHz, CDCl₃): δ -88.6 (s, 2F). GC-MS (m/z): 280 (M⁺), 203 (M⁺-Ph), 127(PhCF₂⁺).

4-(Perfluoroethyl)-1,1'-biphenyl (4e)^[6]

To a 10 mL of Schlenk tube were added 4-biphenylboronic acid (39.6 mg, 0.2 mmol, 1.0 equiv.), NiCl₂(PPh₃)₃ (3.9 mg, 3 mol%), L1 (1.3 mg, 3 mol%), K₂CO₃ (55.2 mg, 2.0 equiv.), DMAP (17.1 mg, 70 mol%). The mixture was evacuated and backfilled with N₂ for three times, DME (2 mL) and CF₃CF₂Cl (generally 10.0 equiv) were then added. The Schlenk tube was screw capped and put into a preheated oil bath (110 °C). After stirring for 5h, the reaction mixture was cooled to room temperature and purified by column chromatography on silica gel (petroleum ether) to product **4e** that a white solid (10 mg, 19%). M.p.:68-70 °C. IR (KBr): 3358, 2923, 2852, 1407, 1292, 1205, 1114, 1093, 974, 841, 739, 691 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.7 (q, *J* = 8.8 Hz, 4H), 7.61 (d, *J* = 7.6 Hz, 2H), 7.48 (t, *J* = 7.6 Hz, 2H), 7.41 (t, *J* = 7.2 Hz, 1H), ¹⁹F NMR (376 MHz, CDCl₃): δ -84.7 (s, 3F), -114.7 (s, 2F). GC-MS (*m*/*z*): 272 (M⁺), 203 (M⁺-CF₃).

4-(Fluoromethyl)-1,1'-biphenyl (4f)^[7]

To a 10 mL of Schlenk tube were added 4-biphenylboronic acid (39.6 mg, 0.2

mmol, 1.0 equiv.), NiCl₂(PPh₃)₃ (3.9 mg, 3 mol%), L1 (1.3 mg, 3 mol%), K₂CO₃ (55.2 mg, 2.0 equiv.), DMAP (17.1 mg, 70 mol%). The mixture was evacuated and backfilled with N₂ for three times, DME (2 mL) and CH₂FCl (generally 10.0 equiv.) were then added. The Schlenk tube was screw capped and put into a preheated oil bath (110 °C). After stirring for 5h, the reaction mixture was cooled to room temperature and purified by column chromatography on silica gel (petroleum ether) to product **4f** that a white solid (9 mg, 25%).GC-MS (m/z): 186 (M⁺), 109 (M⁺-Ph), 153 (M⁺-CH₂F).

4-(2-Chloroethyl)-1,1'-biphenyl (4g)^[8]

To a 10 mL of Schlenk tube were added 4-biphenylboronic acid (39.6 mg, 0.2 mmol, 1.0 equiv.), NiCl₂(PPh₃)₃ (3.9 mg, 3 mol%), L1 (1.3 mg, 3 mol%), K₂CO₃ (55.2 mg, 2.0 equiv.), DMAP (17.1 mg, 70 mol%). The mixture was evacuated and backfilled with N₂ for three times, DME (2 mL) and ClCH₂CH₂Cl (98 mg, 78 μ l, 5.0 equiv) were then added. The Schlenk tube was screw capped and put into a preheated oil bath (110 °C). After stirring for 5h, the reaction mixture was cooled to room temperature and purified by column chromatography on silica gel (petroleum ether) to product 4g that a white solid (34 mg, 79%).M.p.:25-27 °C. IR (KBr): 3401, 3029, 2927, 1601, 1487, 1246, 1108, 825, 748, 698 503 cm^{-1.} ¹H NMR (400 MHz, CDCl₃): δ 7.60-7.55 (m, 4H), 7.44 (t, *J* = 7.6 Hz, 2H), 7.37-7.30 (m, 3H), 3.76 (t, *J* = 7.4 Hz, 2H), 3.12 (t, *J* = 7.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 140.8, 139.9, 137.1, 129.3, 128.8, 127.3, 127.2, 127.1, 44.9, 38.8. GC-MS (*m*/*z*): 216 (M⁺), 167 (M⁺-CH₂Cl)

4-(2-Chloroethyl)-4'-ethyl-1,1'-biphenyl (4h)

To a 10 mL of Schlenk tube were added (4'-Ethyl[1,1'-biphenyl]-4-yl)-boronic (0.2 mmol, 1.0 equiv.), NiCl₂(PPh₃)₃ (3.9 mg, 3 mol%), L1 (1.3 mg, 3 mol%), K₂CO₃ (55.2 mg, 2.0 equiv.), DMAP (17.1 mg, 70 mol%). The mixture was evacuated and backfilled with N₂ for three times, DME (2 mL) and ClCH₂CH₂Cl (98 mg, 78 µl, 5.0 equiv) were then added. The Schlenk tube was screw capped and put into a preheated oil bath (110 °C). After stirring for 5h, the reaction mixture was cooled to room temperature and purified by column chromatography on silica gel (petroleum ether) to product **4h** that a white solid (31 mg, 64%). M.p.:83-85 °C. IR (KBr): 3027, 2961, 2868, 1497, 1400, 1245, 1144, 1004, 814, 747, 707, 499 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.58-7.52 (m, 4H), 7.30 (d, *J* = 7.6 Hz, 4H), 3.77 (t, *J* = 7.4 Hz, 2H), 3.13 (t, *J* = 7.4 Hz, 2H), 2.72 (q, 2.72, *J* = 7.6 Hz, 2H), 1.31 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 143.4, 139.9, 138.2, 136.8, 129.2, 128.3, 127.2, 127.0, 45.00, 38.9, 28.6, 15.7. GC-MS (*m*/*z*): 244 (M⁺), 229 (M⁺-CH₃), 195 (M⁺-CH₂Cl). HRMS (EI): calcd. For C₁₆H₁₇Cl (M⁺): 244.1019, found: 244.1013.

6. References

- 1. Saint-Jalmes, L. J. Fluorine Chem. 2006, 127, 85-90.
- Xiao, Y.; Min, Q.; Xu, C.; Wang, R.; Zhang, X. Angew. Chem., Int. Ed. 2016, 55, 5837-5841.
- An, L.; Xiao, Y.-L.; Zhang, S.; Zhang, X. Angew. Chem., Int. Ed. 2018, 57, 6921–6925.
- Li, X.; Zhao, J.; Wang, Y.; Rong, J.; Hu, M.; Chen, D.; Hu, J. Chem. Asian J.
 2016, 11, 1789–1792.
- 5. Gu, J.; Guo, W.; Zhang, X. Org. Chem. Front. 2015, 2, 38-41.
- Li, L.; Ni, C.; Xie, Q.; Hu, M.; Wang, F.; Hu, J. Angew. Chem., Int. Ed. 2017, 56, 9971–9975.
- 7. Pan, F.; Boursalian, G.; Ritter, T. Angew. Chem., Int. Ed. 2018, 57, 16871–16876.
- Yang, Y.; Cai, J.; Luo, G.; Tong, X.; Su, Y.; Jiang, Y ; Li, C. .*Tetrahedron*. 2019, 60, 1130–1134.

7. ¹H, ¹⁹F and ¹³C NMR Spectra of Isolated Products

S44

