SUPPORT INFORMATION

Theoretical investigation of Vanadium Carbides as electrocatalysts for

HER and OER

Jing Wan^{ab}, Congcong Wang^a, Qian Tang^a, Xiao Gu^{b*}, Mingquan He^{a*}

^a Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China
^bSchool of Physical Science and Technology, Ningbo University, Ningbo 315000, China
E-mail: <u>guxiao@nbu.edu.cn; mingquan.he@cqu.edu.cn</u>
<u>KEYWORDS: Vanadium Carbides, Electrocatalysts, ΔG(H*), Pt-like catalysts</u>

Theoretical calculations

1. The hydrogen evolution reaction (HER) in the acidic condition

The HER reaction in the acid media could be expressed by:

$$\mathrm{H^{+}} + \mathrm{e^{-}} \rightarrow \frac{1}{2}\mathrm{H_{2}} \uparrow$$

There are three possible reaction steps for the HER process in the acid media, the first step is called as Volmer:

$$\mathrm{H^{+}} + \mathrm{e^{-}} \rightarrow \mathrm{H^{*}}$$

Where * and H* were the surface of catalysts and the hydrogen atom adsorbed on the surface of electrodes, respectively. The

second reaction step was the generation of hydrogen, it was called Tafel step or Heyrovsky step:

```
Tafel step: H_{ad} + H_{ad} \rightarrow H_2 \uparrow
```

Heyrovsky step: $H_{ad} + H^+ + e^- \rightarrow H_2 \uparrow$

For the HER, the Gibbs free energy $\Delta G(H^*)$ was generally considered as an descriptor, and the $\Delta G(H^*)$ was calculated by the

following steps:

(1)
$$\Delta G(H^*) = \Delta E(H^*) + \Delta ZPE(H^*) - T\Delta S(H^*)$$

- (2) $\Delta E(H^*) = E(H^*) E(slab) 1/2 E(H_2)$
- (3) $\Delta ZPE(H^*) = ZPE(H^*) 1/2 ZPE(H)$
- (4) $\Delta S(H^*) = S(H^*) 1/2 S(H_2) S(slab)$

2. The hydrogen evolution reaction (HER) in the alkaline condition

The HER reaction in the alkaline media was conducted by:

$$2H_2O + 2e^- + * = H_2 + 2OH^-$$

Like HER in the acid media, and the total reaction can be divided into three possible reactions, called Volmer, Tafel and

Heyrovsky steps.

(1) $H_2O + e^- + cat \rightarrow H^*-cat + OH^-$ (Volmer step)

- (2) $2H^*\text{-cat} \rightarrow H_2\uparrow$ (Tafel step)
- (3) $H^*-cat + H_2O + e^- \rightarrow cat + OH^- + H_2\uparrow$ (Heyrovsky step)

The Volmer step is a key step in splitting water, thus the energy barrier of splitting water is an important descriptor for HER in

the alkaline solutions. In this work, in order to calculate the energy barrier of splitting water, the nudged elastic band method

(NEB) was carried.

3. The oxygen evolution reaction (OER) in acidic condition

the total reaction for oxidation of water to produce oxygen is

$$2H_2O \rightarrow O_2 + 4H^+ + 4e^-$$

Four steps were built to describe OER:

(1)
$$2H_2O + * \rightarrow H_2O + OH^* + e^- + H^+$$

- (2) $OH^* + H_2O \rightarrow O^* + H_2O + e^- + H^+$
- (3) $0^* + H_2 0 \rightarrow 00H^* + e^- + H^+$
- (4) $00H^* \rightarrow 0_2 + e^- + H^+$

Gibbs free energy of these reaction can follow Nørskov et al $\Delta G(i^*) = \Delta E(i^*) + \Delta ZPE(i^*) - T\Delta S(i^*)$, and total energy of O, OH and OOH can be calculated relative to H₂O and H₂.

- (5) $E(OH^*) = E(H_2O) 1/2 E(H_2)$
- (6) $E(0^*) = E(H_20) E(H_2)$
- (7) $E(00H^*) = 2E(H_20) 3/2E(H_2)$

The Gibbs free energy change for steps (1-4) can be calculated by:

- (8) $\Delta G1 = \Delta G(OH^*) eU$
- (9) $\Delta G2 = \Delta G(O^*) \Delta G(OH^*) eU$
- (10) $\Delta G3 = \Delta G(OOH^*) \Delta G(O^*) eU$
- (11) $\Delta G4 = 4.92 \Delta G(OOH^*) eU$

Where U is the potential measured against normal hydrogen electrode (NHE) at standard conditions (T = 298.15 K, P =1 bar, pH = 0). Then reaction overpotential is defined as $\eta = \max(\Delta G1, \Delta G2, \Delta G3, \Delta G4)/e - 1.23$. For the calculation of $\Delta G(i^*)$, $\Delta E(i^*)$ is the binding energy; $\Delta ZPE(i^*)$ is the changes in zero point energy, calculated through frozen phonon approach, which can be approximated by the formula: $ZPE = 1/2 [\Sigma hv_i]$, where h and v_i are Planck constant and zone center vibrational frequencies of system; $T\Delta S(i^*)$ is entropic contribution at standard condition (T=298 K and P=1 bar), as listed in CRC Hanbook.

Table S1 lattice and sites information of Vanadium Carbides

Lattice information				
	Lattice constants (Å)	Space group	Sites information	
V_4C_3	8.219	Fm-3m		
	8.315	P4 ₃ 32	V1 (0.125, 0.375, 0.125)	
			V2 (0.375, 0.375, 0.375)	
V_8C_7			C1 (0.125, 0.125, 0.125)	
			C2 (0.125, 0.625, 0.625)	
			C3 (0.125, 0.375, 0.875)	
	8.305	Fm-3m	V (0, 0, 0)	
٧L			C (0.5, 0.5, 0.5)	

Figure S1 density of state (DOS) of Vanadium Carbides and Pt, (a), (b) and (c) are VC, V_8C_7 and Pt.

Figure S2 (a), (b) and (c) are the free energy curve of V_4C_3 , V_8C_7 and VC, respectively.

Figure S3. The H* sites with the lowest adsorption energy in V_4C_3 . (a) Adsorption site C_1 for (100) surface, (b) adsorption site V_2 for (110), (c) adsorption site V_2 for (111).

Figure S4. The H* sites with the lowest adsorption energy in V_8C_7 . (a) Adsorption site C_1 for (100) surface, (b) adsorption site C_1 for (110), (c) adsorption site C_2 for (111).

Figure S5. The H* sites with the lowest adsorption energy VC. (a) Adsorption site C_1 for (100) surface, (b) adsorption site V_1 for (110), (c) adsorption site V_1 for (111).

Surface	Absorption site	$\Delta \mathbf{E}(\mathbf{H}^*)$	ZPE(H*)	$\Delta ZPE(H^*)$	$\Delta \mathbf{G}(\mathbf{H}^*)$
		eV	eV	eV	eV
001	C1	-0.06	0.154	0.015	0.165
	C2	-1.445	0.159	0.02	-1.215
	V1	0.663	0.124	-0.014	0.859
	V2	-2.1638	0.124	-0.014	-1.967
110	C1	-0.621	0.194	0.055	-0.356
	V1	-2.003	0.126	-0.012	-1.805
	V2	-0.555	0.126	-0.012	-0.351
111	V1	-2.049	0.122	0.012	-1.827
	V2	-1.785	0.124	-0.014	-1.589
	V3	-2.05	0.123	-0.016	-1.856

Table S2 The values of $\Delta E(H^*)$, ZPE(H*), $\Delta ZPE(H^*)$ and $\Delta G(H^*)$ of hydrogen atoms at the different adsorption sites on the surface of V₄C₃ (100), (110), and (111).

Table S3 The values of $\Delta E(H^*)$, $ZPE(H^*)$, $\Delta ZPE(H^*)$ and $\Delta G(H^*)$ of hydrogen atoms at the different adsorption sites on the surface of V₈C₇ (100), (110), and (111)

Surface	Absorption site	$\Delta \mathbf{E}(\mathbf{H}^*)$	ZPE (H*)	$\Delta ZPE(H^*)$	$\Delta \mathbf{G}(\mathbf{H}^*)$
		eV	eV	eV	eV
001	C1	0.089	0.155	0.016	0.306
	V1	-0.635	0.149	0.009	-0.425
110	C1	-0.374	0.200	0.060	-0.114
	C2	-0.575	0.226	0.086	-0.289
	V1	-0.363	0.123	0.015	-0.178
	V2	-0.374	0.122	-0.016	-0.191
111	C1	-0.707	0.245	0.106	0.401
	C2	-0.575	0.237	0.098	0.367
	V1	-0.753	0.123	-0.015	-0.569
	V2	-0.780	0.123	-0.015	-0.595

Surface	Absorption site	$\Delta \mathbf{E}(\mathbf{H}^*)$	ZPE (H [*])	$\Delta ZPE(H^*)$	$\Delta \mathbf{G}(\mathbf{H}^*)$
		eV	eV	eV	eV
100	C1	-0.009	0.154	0.015	0.205
	V1	-0.01	0.154	0.015	0.205
110	C1	-0.989	0.211	0.073	-0.715
	V1	-0.375	0.123	-0.015	-0.191
111	C1	-1.464	0.225	0.085	-1.178
	V1	-0.912	0.124	-0.014	-0.726

Table S4 The values of $\Delta E(H^*)$, ZPE(H*), $\Delta ZPE(H^*)$ and $\Delta G(H^*)$ of hydrogen atoms at the different adsorption sites on the surface of VC (100), (110), and (111).

Samples	Adsorption	$\Delta G (eV)$	Overpotential (V)
V ₄ C ₃ _001	OH*	0.768	
	O*	1.109	1.55
	OOH*	3.89	
V ₄ C ₃ _110	OH*	-1.498	
	O*	-0.068	6.505
	OOH*	-2.815	
V ₄ C ₃ _111	OH*	-0.424	
	O*	-1.376	6.677
	OOH*	-2.987	
VC_001	OH*	0.644	
	O*	0.759	1.7
	OOH*	3.898	
VC_110	OH*	-0.969	
	O*	0.020	5.155
	OOH*	-1.465	
VC_111	OH*	-1.752	
	O*	-1.087	7.657
	OOH*	-3.967	
V ₈ C ₇ _001	OH*	0.317	
	O*	0.657	1.803
	OOH*	3.443	
V ₈ C ₇ _110	OH*	-0.217	
	O*	-1.383	5.68
	OOH*	-1.99	
V ₈ C ₇ _111	OH*	-0.703	
	O*	-1.641	4.101
	OOH*	2.143	

Table S5 free energies of OH*, O*, OOH*

Sample	Planes	Surface energy (J. m^{-2})
	001	1.845
V_4C_3	110	3.249
	111	4.261
	001	1.737
V ₈ C ₇	110	4.405
	111	5.056
	001	1.408
VC	110	3.261
	111	4.776

Table S6. The surface energies of V_8C_6 , V_8C_7 , V_8C_8 , with the lowest adsorption energy in V_8C_6 . (a) Adsorption site C_1 for (100) surface, (b) adsorption site V_2 for (110), (c) adsorption site V_2 for (111).

Table S7 calculated formation of V_4C_3 , V_8C_7 , VC

Sample	$\Delta \mathbf{E}_{\mathbf{f}}/\mathbf{eV}$
V ₄ C ₃	-0.429
V ₈ C ₇	-0.617
VC	-0.502

Figure S6. (a)V-C bonds length of $V_4C_3_{01}$, (b) V-C bonds length of $V_8C_7_{110}$, (c) V-C bonds length of VC_110.