Supporting Information

Co-regulation of the copper vacancy concentration and point defects leading to the enhanced thermoelectric performance of $Cu_3In_5Te_9$ -based chalcogenides

Min Li, ^{a,b} Yong Luo,^{b,*} Xiaojuan Hu,^c Zhongkang Han,^{c,*} Xianglian Liu,^a Jiaolin Cui^{a,*}

Figure S1 (a) The fracture surface of $(Cu_{3+x}In_{5-x}Ga_xTe_9)$ (x=0.3); (d) An EDAX pattern.

Table S1 Average molars of four elements identified in $(Cu_{3+x}In_{5-x}Ga_xTe_9)$ (*x*=0, 0.3) (taken from three different areas). The error of the compositions are about 5%.

Compounds	Cu	In	Te	Ga
x= 0	2.86	5.08	9.04	
x= 0.1	2.94	5.04	9.02	0.08
<i>x</i> = 0.3	3.23	4.65	9.11	0.29

Figure S2 Rietveld refinements using the X-ray diffraction data to the samples $Cu_{3+x}In_{5-x}Ga_xTe_9$ (*x*=0, 0.1, 0.2, 0.4).

Table S2 Experimental Parameters of Powder X-ray Diffraction, and Refined Crystallographic Data of $Cu_{3+x}In_{5-x}Ga_xTe_9$ (*x*=0).

Chemical Formula	Cu ₃ In ₅ Te ₉
Space group	P4(75)
<i>a</i> (Å)	8.73854(7)
<i>b</i> (Å)	8.73854(7)
<i>c</i> (Å)	7.12986(9)
$V(Å^3)$	544.45(10)
Number of structure parameters	11
Number of profile parameters	13
^{<i>a</i>} <i>R</i> _B (%)	4.29
^{<i>b</i>} <i>R</i> _p (%)	4.24
^c R _{wp} (%)	5.44
d S	1.28

$${}^{a}R_{B} = \sum \left| I_{O,h} - I_{C,h} \right| / \sum \left| I_{O,h} \right| \qquad {}^{b}R_{P} = \sum \left| y_{i} - y_{C,i} \right| / \sum y_{i} \qquad {}^{c}R_{wp} = \left[\sum w_{i} \left| y_{i} - Y_{C,i} \right|^{2} / \sum w_{i} y_{i}^{2} \right]^{\frac{1}{2}} \qquad {}^{d}S = R_{wp} / R_{exp}$$

Cu _{3.1} In _{4.9} Ga _{0.1} Te ₉
P4(75)
8.73052(8)
8.73052(8)
7.10306(7)
541.41(5)
12
19
4.43
4.46
5.57
1.25

Table S3 Experimental Parameters of Powder X-ray Diffraction, and Refined Crystallographic Data of $Cu_{3+x}In_{5-x}Ga_xTe_9$ (*x*=0.1).

Table S4 Experimental Parameters of Powder X-ray Diffraction, and Refined Crystallographic Data of $Cu_{3+x}In_{5-x}Ga_xTe_9$ (*x*=0.2).

Chemical Formula	Cu _{3.2} In _{4.8} Ga _{0.2} Te ₉
Space group	P4(75)
a (Å)	8.71896(5)
<i>b</i> (Å)	8.71896(5)
<i>c</i> (Å)	7.09668(7)
$V(Å^3)$	539.49(9)
Number of structure parameters	13
Number of profile parameters	29
$^{a}R_{\mathrm{B}}$ (%)	4.69
^b R _p (%)	4.90
^c R _{wp} (%)	6.00
^d S	1.23

Chemical Formula	Cu _{3.4} In _{4.6} Ga _{0.4} Te ₉
Space group	P4(75)
a (Å)	8.690(6)
<i>b</i> (Å)	8.690(6)
<i>c</i> (Å)	7.05(3)
$V(Å^3)$	532.38(15)
Number of structure parameters	13
Number of profile parameters	29
$^{a}R_{\mathrm{B}}$ (%)	4.37
^b R _p (%)	4.20
^c R _{wp} (%)	5.53
d S	1.31

Table S5 Experimental Parameters of Powder X-ray Diffraction, and Refined Crystallographic Data of $Cu_{3+x}In_{5-x}Ga_xTe_9$ (*x*=0.4).

Figure S3 Microstructures of the intrinsic $Cu_3In_5Te_9$ powder sample ($V_c=0.11, x=0$). (a) TEM image; (b) Zoomed view in (a); (c) Corresponding selected area electron diffraction (SAED) pattern; (d) Magnified image of (b).

Figure S4 Microstructures of the $Cu_{3+x}In_{5+x}Ga_xTe_9$ powder sample ($V_c=0.078$, x=0.3). (a) TEM image; (b) Zoomed view in (a); (c) Corresponding selected area electron diffraction (SAED) pattern; (d) Magnified image of (b).

Figure S5 Crystal structures of (a) $Cu_{10}In_{17}Te_{32}$ and (b) $Cu_{11}In_{16}GaTe_{32}$. Cu, In, Te, and Ga are in yellow, green, grey, and blue, respectively.

Figure S6 TGA/DSC data for $Cu_3In_5Te_9$, with exothermic effect at ~ 427 °C, at which an order-disorder transition might occur.