
Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2019

## Supporting

## S1: Comparison table of metal oxide and graphene synergistic catalytic

| meterial                       | Graphene<br>type | Degradation<br>method | Radical<br>species | lighting<br>need | References    |
|--------------------------------|------------------|-----------------------|--------------------|------------------|---------------|
| Fe <sub>2</sub> O <sub>3</sub> | reduced          | photocatalytic        | hydroxyl           | yes              | (Pradhan,     |
|                                | graphene         |                       | radical            |                  | Padhi and     |
|                                | oxide            |                       |                    |                  | Parida, 2013  |
| MgO                            | graphene         | photocatalytic        | hydroxyl           | yes              | (Arshad et    |
|                                | oxide            |                       | radical            |                  | al., 2017)    |
| V <sub>2</sub> O <sub>5</sub>  | graphene         | photocatalytic        | oxide              | yes              | (Shanmugan    |
|                                |                  |                       | radicals/          |                  | et al., 2015) |
|                                |                  |                       | hydroxyl           |                  |               |
|                                |                  |                       | radical            |                  |               |
| TiO                            | graphene         | photocatalytic        | oxide              | yes              | (Zhao et al., |
|                                | oxide            |                       | radicals/          |                  | 2012)         |
|                                |                  |                       | hydroxyl           |                  |               |
|                                |                  |                       | radical            |                  |               |
| NiO                            | graphene         | photocatalytic        | hydroxyl           | yes              | (Arshad,      |
|                                | nanoplatelets    |                       | radical            |                  | Iqbal and     |
|                                |                  |                       |                    |                  | Mansoor,      |
|                                |                  |                       |                    |                  | 2017)         |
| Mn <sub>3</sub> O <sub>4</sub> | graphene         | FENTON'S              | hydroxyl           | no               | (Li et al.,   |
|                                | oxide            | REAGENT               | radical            |                  | 2015)         |
| C0 <sub>3</sub> O <sub>4</sub> | graphene         | FENTON'S              | Sulfate            | no               | (Shi et al.,  |
|                                | oxide            | REAGENT               | radical            |                  | 2012)         |

## materials in recent years



S 1: The result of spectroscopic characterization with membrane before

and after degradation

## reference

- 1. Arshad, A. *et al.* (2017) 'Graphene nanoplatelets induced tailoring in photocatalytic activity and antibacterial characteristics of MgO/graphene nanoplatelets nanocomposites', *Journal of Applied Physics*, 121(2). doi: 10.1063/1.4972970.
- Arshad, A., Iqbal, J. and Mansoor, Q. (2017) 'NiO-nanoflakes grafted graphene: An excellent photocatalyst and a novel nanomaterial for achieving complete pathogen control', *Nanoscale*. Royal Society of Chemistry, 9(42), pp. 16321–16328. doi: 10.1039/c7nr05756c.
- Li, Y. *et al.* (2015) 'In situ fabrication of Mn3O4 decorated graphene oxide as a synergistic catalyst for degradation of methylene blue', *Applied Catalysis B: Environmental*. Elsevier B.V., 162, pp. 268–274. doi: 10.1016/j.apcatb.2014.06.058.
- 4. Pradhan, G. K., Padhi, D. K. and Parida, K. M. (2013) 'Fabrication of α-Fe2O3 Nanorod/RGO composite: A novel hybrid photocatalyst for phenol degradation', *ACS Applied Materials and*

Interfaces, 5(18), pp. 9101-9110. doi: 10.1021/am402487h.

- Shanmugam, M. *et al.* (2015) 'Enhanced Photocatalytic Performance of the Graphene-V2O5 Nanocomposite in the Degradation of Methylene Blue Dye under Direct Sunlight', *ACS Applied Materials and Interfaces*, 7(27), pp. 14905–14911. doi: 10.1021/acsami.5b02715.
- Shi, P. *et al.* (2012) 'Applied Catalysis B : Environmental Co 3 O 4 nanocrystals on graphene oxide as a synergistic catalyst for degradation of Orange II in water by advanced oxidation technology based on sulfate radicals', '*Applied Catalysis B, Environmental*'. Elsevier B.V., 123–124, pp. 265–272. doi: 10.1016/j.apcatb.2012.04.043.
- Zhao, D. *et al.* (2012) 'Enhanced photocatalytic degradation of methylene blue under visible irradiation on graphene@TiO 2 dyade structure', *Applied Catalysis B: Environmental*. Elsevier B.V., 111–112, pp. 303–308. doi: 10.1016/j.apcatb.2011.10.012.