Supplemental Material

Two new inorganic-organic hybrid zinc phosphite and their derived $\mathrm{ZnO} / \mathbf{Z n S}$ heterostructure for efficient photocatalytic hydrogen production

Yayong Sun ${ }^{\text {a,b }}$, Fupeng Wanga ${ }^{\text {af, }}$, Yunlei $\mathrm{Fu}^{\text {a }}$, Chao Chen ${ }^{\text {a }}$, Xuanyi Wang ${ }^{\text {a }}$, Zhenyu Xiao ${ }^{\text {a* }}$, Yanru Liu ${ }^{\text {a }}$, Jixiang Xu $^{\text {a }}$, Bin Lia* ${ }^{\text {a }}$, Lei Wang ${ }^{a}$
${ }^{a}$ Key Laboratory of Eco-chemical Engineering, Ministry of Education, Inorganic Synthesis and Applied Chemistry, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
${ }^{b}$ State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Mater, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
\# These authors contributed equally to this work.

(1) X-ray crystallography

The crystallographic diffraction data of $\mathbf{1}$ and $\mathbf{2}$ were collected with an Agilent Technologies Gemini A Ultra diffractometer equipped with graphite-monochromated Mo-K α radiation $(\lambda=0.71073 \AA)$ at room temperature. All absorption corrections were applied using the multiscan program SADABS. The structure was solved and refined using Full-matrix least-squares based on F^{2} with program SHELXS-97 and SHELXL-97 [1] within Olex2 [2]. All non-hydrogen atoms of two crystal structures were refined with anisotropic thermal parameters. The positions of hydrogen atoms were geometrically placed. The crystallographic data and structural refinement parameters of the five CPs are summarized in Table S1 and the selected bond lengths and angles are given in Table S2.

(2) Table S1 Crystal data and structure refinements for compound 1 and 2.

Comound	1	2
Empirical formula	$\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{PZn}$	$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{PZn}$
Formula weight	264.49	277.51
T, K	293(2)	293(2)
crystal system	orthorhombic	monoclinic
space group	Pbcn	$P 2_{1} / c$
a (\AA)	8.8182(5)	5.2103(2)
b (\AA)	10.1110(4)	11.7634(5)
c (\AA)	21.4930(9)	17.4168(8)
α (deg)	90	90
β (deg)	90	99.315(4)
γ (deg)	90	90
$V\left(\AA^{3}\right)$	1916.33(15)	1053.41(8)
Z	8	4
$D_{c}\left(\mathrm{~g} / \mathrm{cm}^{3}\right)$	1.834	1.750
$\mu\left(\mathrm{mm}^{-1}\right)$	2.710	2.470
$F\left(\begin{array}{lll}0 & 0\end{array}\right)$	1064.0	560.0
$R_{\text {int }}$	0.0453	0.0513
GOF on F^{2}	1.030	1.156
$\begin{aligned} & \mathrm{R}_{1}{ }^{\mathrm{a}} / \mathrm{wR}_{2}{ }^{\mathrm{b}} \\ & \mathrm{I}>2 \sigma(\mathrm{I}) \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0317 \\ & \mathrm{wR}_{2}=0.0714 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.1745 \\ & \mathrm{wR}_{2}=0.4731 \end{aligned}$
$\mathrm{R}_{1}, \mathrm{wR}_{2}$ (all data)	$\begin{aligned} & \mathrm{R}_{1}=0.0442 \\ & \mathrm{wR}_{2}=0.0782 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.1774, \\ & \mathrm{wR}_{2}=0.474 \end{aligned}$

${ }^{\mathrm{a}} \mathrm{R}_{1}=\Sigma\left(\| \mathrm{F}_{0}\left|-\left|\mathrm{F}_{\mathrm{c}}\right|\right|\right) / \Sigma\left|\mathrm{F}_{0}\right| .{ }^{\mathrm{b}} \mathrm{WR}_{2}=\left[\Sigma \mathrm{W}\left(\left|\mathrm{F}_{0}\right|^{2}-\mid \mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2} / \Sigma\left(\mathrm{F}_{0}{ }^{2}\right)^{2}\right]^{1 / 2}$

(3) Table: S2 Selected bond lengths (\AA) and angles (deg) for 1 and 2

Complex 1

$\mathrm{Zn} 1-\mathrm{O} 1$	$1.951(2)$	$\mathrm{Zn} 1-\mathrm{O} 2^{\mathrm{i}}$	$1.933(2)$
$\mathrm{Zn} 1-\mathrm{N} 1$	$2.002(3)$	$\mathrm{Zn} 1-\mathrm{O} 3^{\mathrm{ii}}$	$1.910(2)$
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{N} 1$	$107.78(11)$	$\mathrm{O}^{\mathrm{ii}}-\mathrm{Zn} 1-\mathrm{O} 1$	$110.53(10)$
$\mathrm{O}^{2}-\mathrm{Zn} 1-\mathrm{O} 1$	$108.49(11)$	$\mathrm{O}^{\mathrm{ii}}-\mathrm{Zn} 1-\mathrm{N} 1$	$113.89(11)$
$\mathrm{O} 2^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{N} 1$	$112.98(11)$	$\mathrm{O}^{3 \mathrm{ii}}-\mathrm{Zn} 1-\mathrm{O} 2^{1}$	$103.05(10)$

Symmetry code: (i) 1-x, 1-y, 1-z; (ii) $-1 / 2+x, 1 / 2-y, 1-z$; (iii) -x, y, $3 / 2-z$; (iv) $1 / 2+x, 1 / 2-y, 1-z$.

Complex 2

Zn1-O1	1.941(2)	Zn1-N1	2.007(17)
$\mathrm{Zn} 1-\mathrm{O}{ }^{\text {i }}$	1.929(15)	$\mathrm{Zn} 1-\mathrm{O}{ }^{\text {2ii }}$	1.933(15)
O1-Zn1-N1	111.1(7)	O2i-Zn1-O1	109.9(8)
O3i-Znl-O1	113.0(7)	$\mathrm{O} 2{ }^{\text {ii }}$-Zn1-O3 ${ }^{\text {i }}$	112.3(7)
O3i-Zn1-N1	109.7(8)	$\mathrm{O} 2{ }^{\text {iii-Znl-N1 }}$	100.2(7)

Symmetry code: (i): 1-x, 1-y, 1-z; (ii): -x, 1-y, 1-z; (iii): -x, 1-y, -z.
(4) Table: S3 Hydrogen bonds for 2

D-H...A (\AA) (symmetry mode)	H...A (\AA)	D...A (\AA)	D-H...A (deg)
Complex 2			
C5-H5A $\cdots \mathrm{O} 2(-1+\mathrm{x}, 0.5-\mathrm{y}, 0.5+\mathrm{z})$	$2.502(2)$	$3.412(4)$	$155.7(2)$
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O} 1(\mathrm{x}, 0.5-\mathrm{y}, 0.5+\mathrm{z})$	$2.343(2)$	$3.267(4)$	$173.4(2)$

Fig. S1. The 3D 2-nodal 3,4-connected 3,4L83 topology of compound 1 with point symbol of $\left\{4.8^{2} .10^{3}\right\}\left\{4.8^{2}\right\}$.

Fig. S2. 3D hydrogen bonding surpramolecule of compound 2.

Fig. S3: IR spectra of $\mathbf{1}$ and $\mathbf{2}$

Fig. S4: Plots of photocatalytic H_{2} evolution amount of 2-140, 2-160 and 2-180.

Fig. S5: Plots of photocatalytic H_{2} evolution amount of the controlled experiment by merely irradiating $\mathrm{Na}_{2} \mathrm{~S} / \mathrm{Na}_{2} \mathrm{SO}_{3}$ solution.

Fig. S6: a) The SEM and b) TEM images of 2-160.

Fig. S7: (a) The XPS Survey spectrum and high resolution spectra of Zn 2 p (b), O 1s (c) and $S 2 p(d)$ in $\mathbf{1 - 1 6 0}$ sample.

Equation S1:

$$
\begin{aligned}
\text { The apparent quantum yield } & =\frac{\text { Number of reacted electrons }}{\text { Number of incident photons }} \times 100 \% \\
& =\frac{2 \times \text { number of evolved } \mathrm{H}_{2} \text { molecules }}{\text { Number of incident photons }} \times 100 \% \\
& =\frac{2 \times \mathrm{n}_{H_{2}}}{n_{p}} \times 100 \% \\
& =\frac{2 \times \mathrm{n}_{H_{2}}}{n_{p}} \times 100 \%
\end{aligned}
$$

Where $\mathrm{n}_{H_{2}}$ and n_{p} stand for the number of H_{2} molecules and photons, respectively; P is the light power; $\mathrm{t}=3600 \mathrm{~s}$ represents the irradiation time; $\lambda=420 \mathrm{~nm}$ is the wavelength of incident light; $\mathrm{h}=6.63 \times 10^{-34} \mathrm{~J}$ s is the Planck constant; and $\mathrm{c}=3.0$ $\times 108 \mathrm{~m} \mathrm{~s}^{-1}$ is the light speed.

References

[1]. G.M. Sheldrick., Acta Cryst., A64 (2008) 112.
[2]. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann., J. Appl. Cryst. 42 (2009) 339.

