Electronic Supplementary Information

Co-Catalyzed *ortho*-C-H Functionalization/ Annulation of Arenes and Alkenes with Alkynylsilanes: Access to Isoquinolone and Pyridone Motifs

Cong Lin, *a,b and Liang Shen*a,b

^a College of Chemistry and Chemical Engineering, Jiangxi Science & Technology

Normal University, Nanchang 330013, China

^b College of Chemistry and Chemical Engineering, Jiangxi Engineering Laboratory of Waterborne Coatings, Jiangxi Science & Technology Normal University, Nanchang 330013, China

E-mail: conglin0127@jxstnu.com.cn

Table of Contents

General Information	S2
Optimization of Reaction Conditions ^a	S3
Typical Procedure for the Synthesis of Isoquinolones	S4
Typical Procedure for the Synthesis of Timethylsilane Isoquinolones	S4
Analytical Data for Products	S5
Gram-Scale Synthesis of 3a and 7a	S26
The H/D Exchange Experiments	S27
The Kinetic Isotope Experiments	S28
References	S30
Copies of ¹ H and ¹³ C NMR Spectra	S31

General Information

All reactions were performed under O₂ atmosphere in a 25 mL sealed tube. The materials and solvents were purchased from common commercial sources and used without additional purification, if there is no special version. Starting materials were synthesized according to literature procedures.¹⁻⁷ ¹H NMR spectra were recorded at 400 MHz using TMS as internal standard, ¹³C NMR spectra was recorded at 100 MHz using TMS as internal standard. The multiplicities are reported as follows: singlet (s), doublet (d), doublet of doublets (dd), multiplet (m), and andtriplet (t). Mass spectroscopy data of the products were collected on an HRMS-TOF instrument.

Optimization of Reaction Conditions^{*a*}

		[Mn]	Cat. Co] , additive		l_ď		O ⊥_ _N ∕Q
	H +Ph—≡ H	solvent	t, T, O ₂ , 24 h		Ph +		Ph
	1a	2a		3a H		7a	TMS
Entry	Cat.Co	[Mn]	additive	solvent	T(°C)	3a ^b	7a ^b
1	Co(OAc) ₂	Mn(OAc) ₂	CsF	TFE	100	85%	<5%
2	CoCl ₂	$Mn(OAc)_2$	CsF	TFE	100	63%	<5%
3	CoI ₂	Mn(OAc) ₂	CsF	TFE	100	30%	15%
4	CoBr ₂	$Mn(OAc)_2$	CsF	TFE	100	34%	11%
5	Co(OAc)2·4H2O	Mn(OAc) ₂	CsF	TFE	100	96%	trace
6	$Co(acac)_2$	$Mn(OAc)_2$	CsF	TFE	100	55%	26%
7	Co(acac) ₃	$Mn(OAc)_2$	CsF	TFE	100	57%	20%
8	-	Mn(OAc) ₂	CsF	TFE	100	0	0
9	Co(OAc) ₂ ·4H ₂ O	$Mn(OAc)_2$	CsF, NaOAc(2.0)	TFE	100	73%	15%
10	Co(OAc) ₂ ·4H ₂ O	$Mn(OAc)_2$	CsF(2.0)	TFE	100	83%	trace
11	Co(OAc) ₂ ·4H ₂ O	Mn(OAc) ₂	CsF(4.0)	TFE	100	77%	trace
12	Co(OAc) ₂ ·4H ₂ O	$Mn(OAc)_2$	KF	TFE	100	75%	10%
13	Co(OAc) ₂ ·4H ₂ O	Mn(OAc) ₂	LiF	TFE	100	22%	trace
14	Co(OAc) ₂ ·4H ₂ O	$Mn(OAc)_2$	NaF	TFE	100	21%	trace
15	Co(OAc) ₂ ·4H ₂ O	$Mn(OAc)_2$	-	TFE	100	33%	21%
16 ^c	Co(OAc) ₂ ·4H ₂ O	Mn(OAc) ₂	CsF	TFE	100	0	0
17 ^d	Co(OAc) ₂ ·4H ₂ O	$Mn(OAc)_2$	CsF	TFE	100	21%	<10%
18	Co(OAc) ₂ ·4H ₂ O	$Mn(OAc)_2$	CsF	TFE	80	trace	trace
19	Co(OAc) ₂ ·4H ₂ O	Mn(OAc) ₂	CsF	TFE	90	66%	15%
20	Co(OAc) ₂ ·4H ₂ O	$Mn(OAc)_2$	CsF	TFE	110	72%	<10%
21	Co(OAc) ₂ ·4H ₂ O	$Mn(OAc)_2$	CsF	DCE	100	0	0
22	$Co(OAc)_2 \cdot 4H_2O$	$Mn(OAc)_2$	CsF	HFIP	100	0	0
23	$Co(OAc)_2 \cdot 4H_2O$	$Mn(OAc)_2$	CsF	DMF	100	0	0
24	$Co(OAc)_2 \cdot 4H_2O$	$Mn(OAc)_2$	CsF	Dioxane	100	0	0
25	$Co(OAc)_2 \cdot 4H_2O$	$Mn(OAc)_2$	CsF	PhCF ₃	100	0	0
26	$Co(OAc)_2 \cdot 4H_2O$	$Mn(OAc)_2 \cdot 4H_2O$	CsF	TFE	100	83%	trace
27	$Co(OAc)_2 \cdot 4H_2O$	$Mn(OAc)_3 \cdot 2H_2O$	CsF	TFE	100	56%	11%
28	$Co(OAc)_2 \cdot 4H_2O$	$Mn(acac)_2$	CsF	TFE	100	23%	39%
29	$Co(OAc)_2 \cdot 4H_2O$	$Mn(acac)_3$	CsF	TFE	100	18%	56%
30	$Co(OAc)_2 \cdot 4H_2O$	-	CsF	TFE	100	trace	trace
31	Co(acac) ₂	Mn(acac) ₃	NaOAc (0.2)	TFE	100	<5	76
32	Co(acac) ₃	$Mn(acac)_3$	NaOAc (0.2)	TFE	100	trace	trace

^{*a*} Reactions were carried out by using **1a** (0.1 mmol), **2a** (0.3 mmol), Cat. Co (0.02 mmol), [Mn] (0.2 mmol), additive (0.12 mmol), solvent (1.0 ml), T, O₂, 24 h. ^{*b*} Isolated yield. ^{*c*} N₂. ^{*d*} air.

Typical Procedure for the Synthesis of Isoquinolones

A 25 mL sealed tube was charged with amide **1**, **5** (0.1 mmol), alkynylsilanes **2** (0.3 mmol), $Co(OAc)_2 \cdot 4H_2O$ (5 mg, 0.02 mmol), $Mn(OAc)_2$ (34.6 mg, 0.2 mmol), CsF (18.2-45.6 mg, 0.12-0.3 mmol) and CF₃CH₂OH (1.0 mL). The vial was evacuated and filled with O₂ atmosphere for five times, and stirred at 100 °C or 120 °C for 24 h. The mixture was then cooled to room temperature, diluted with EtOAc, filtered through a celite pad, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel, eluting with EtOAc/hexane (1:5 ~ 1:2, v/v), to afford the desired products **3**, **4** and **6**.

Typical Procedure for the Synthesis of Timethylsilane Isoquinolones

A 25 mL sealed tube was charged with amide **1**, **5** (0.1 mmol), alkynylsilanes **2** (0.3 mmol), Co(acac)₂ (5.2 mg, 0.02 mmol), Mn(acac)₃ (70.4 mg, 0.2 mmol), NaOAc (16.4 mg, 0.2 mmol) and CF₃CH₂OH (1.0 mL). The vial was evacuated and filled with O₂ atmosphere for five times, and stirred at 100 °C for 24 h. The mixture was then cooled to room temperature, diluted with EtOAc, filtered through a celite pad, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel, eluting with EtOAc/hexane (1:5 ~ 1:2, v/v), to afford the desired products **7**.

Analytical Data for Products

3-phenyl-2-(quinolin-8-yl)isoquinolin-1(2H)-one (3a)

Rf 0.24 (hexane/EtOAc = 2/1). 96%, 33.4 mg. White solid; ¹H NMR (CDCl₃, 400 MHz) δ 8.91 (dd, J_1 = 1.6 Hz; J_2 = 4.0 Hz, 1H), 8.47 (d, J = 8.0 Hz, 1H), 8.09 (dd, J_1 = 1.6 Hz; J_2 = 8.4 Hz, 1H), 7.68-7.30 (m, 2H), 7.61 (d, J = 7.6 Hz, 1H), 7.48-7.53 (m, 2H), 7.41 (t, J = 8.0 Hz, 1H), 7.37 (dd, J_1 = 4.0 Hz; J_2 = 8.0 Hz, 1H), 7.09-7.12 (m, 2H), 7.00-7.04 (m, 1H), 6.95 (t, J = 7.2 Hz, 2H), 6.66 (s, 1H).¹³C NMR (CDCl₃, 100 MHz) δ 163.3, 151.0, 144.7, 144.5, 137.3, 137.3, 136.3, 136.2, 132.7, 130.8, 128.8, 128.7, 128.5, 128.0, 127.4, 126.8, 126.2, 125.9, 125.5, 121.6, 107.6. HRMS (EI-TOF) calcd forC₂₄H₁₆N₂O (M⁺):348.1263, found:348.1263.

3-(4-bromophenyl)-2-(quinolin-8-yl)isoquinolin-1(2H)-one (3b)

Rf 0.24 (hexane/EtOAc = 2/1). 58%, 24.7 mg. White solid; ¹H NMR (CDCl₃, 400 MHz) δ 8.89 (dd, J_1 = 1.6 Hz; J_2 = 4.0 Hz, 1H), 8.46 (d, J = 8.0 Hz, 1H), 8.12 (dd, J_1 = 1.6 Hz; J_2 = 8.4 Hz, 1H), 7.77 (dd, J_1 = 1.2 Hz; J_2 = 8.0 Hz, 1H), 7.69-7.73 (m, 1H), 7.60 (d, J= 7.6 Hz, 1H), 7.50-7.54 (m, 2H), 7.46 (t, J= 7.6 Hz, 1H), 7.39 (dd, J_1 = 4.4 Hz; J_2 = 8.4 Hz, 1H), 7.09 (d, J= 7.6 Hz, 2H), 7.00 (d, J= 8.8 Hz, 2H), 6.62 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ 163.2, 151.0, 144.6, 143.3, 137.1, 137.0, 136.3, 135.3, 132.8, 130.8, 130.6, 130.4, 129.0, 128.9, 128.5, 127.0, 126.2, 126.0, 125.6, 122.3, 121.7, 107.7. HRMS (EI-TOF) calcd for C₂₄H₁₅BrN₂O (M⁺):426.0368,

3-(pyridin-2-yl)-2-(quinolin-8-yl)isoquinolin-1(2H)-one (3c)

Rf 0.24 (hexane/EtOAc = 10/1). 91%, 31.8 mg. White solid; ¹H NMR (CDCl₃, 400 MHz) δ 8.90-8.91 (m, 1H), 8.49 (d, *J* = 8.0 Hz, 1H), 8.31 (d, *J* = 4.4 Hz, 1H), 8.11 (d, *J* = 8.4 Hz, 1H), 7.70-7.75 (m, 2H), 7.65 (d, *J* = 9.6 Hz, 2H), 7.52-7.56 (m, 1H), 7.45 (t, *J* = 8.0 Hz, 1H), 7.37 (dd, *J*₁ = 4.0 Hz; *J*₂ = 8.0 Hz, 1H), 7.20-7.24 (m, 1H), 7.08 (d, *J* = 7.6 Hz, 1H), 6.93 (dd, *J*₁ = 5.2 Hz; *J*₂ = 7.2 Hz, 1H), 6.86 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ 163.2, 154.2, 150.9, 148.5, 144.5, 142.9, 137.0, 136.9, 136.3, 135.6, 132.8, 131.1, 128.7, 128.5, 127.2, 126.6, 126.0, 123.9, 122.6, 121.5, 108.4. HRMS (EI-TOF) calcd for C₂₃H₁₅N₃O (M⁺): 349.1215, found: 349.1211.

3-cyclohexyl-2-(quinolin-8-yl)isoquinolin-1(2H)-one (3d)

Rf 0.24 (hexane/EtOAc = 10/1). 98%, 34.7 mg. White solid; ¹H NMR (CDCl₃, 400 MHz) δ 8.88 (dd, J_1 = 1.6 Hz; J_2 = 4.0 Hz, 1H), 8.39 (d, J = 8.0 Hz, 1H), 8.24 (dd, J_1 = 2.0 Hz; J_2 = 8.0 Hz, 1H), 7.95 (dd, J_1 = 1.6 Hz; J_2 = 8.0 Hz, 1H), 7.70-7.75 (m, 2H), 7.61-7.68 (m, 1H), 7.52 (d, J = 8.0 Hz, 1H), 7.40-7.45 (m, 2H), 6.43 (s, 1H), 1.16-1.26 (m, 5H), 0.84-0.96 (m, 2H), 0.64-0.71 (m, 1H), 0.56-0.63 (m, 1H), 0.45-0.51 (m, 1H), 0.27-0.34 (m, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ 163.7, 151.3, 145.2, 144.7, 137.6, 137.1, 136.3, 132.5, 130.3, 129.3, 129.0, 128.3, 126.3, 126.1, 125.7, 125.2, 121.7, 103.2, 31.5, 30.2, 29.7. HRMS (EI-TOF) calcd for C₂₄H₂₂N₃O (M⁺): 354.1732, found:

354.1735.

3-methyl-2-(quinolin-8-yl)isoquinolin-1(2H)-one (3e)

Rf 0.24 (hexane/EtOAc = 10/1). 56%, 16.0 mg. White solid; ¹H NMR (CDCl₃, 400 MHz) δ 8.89 (dd, J_1 = 1.6 Hz; J_2 = 4.4 Hz, 1H), 8.38 (d, J = 8.0 Hz, 1H), 8.24 (dd, J_1 = 1.6 Hz; J_2 = 5.2 Hz, 1H), 7.97 (dd, J_1 = 2.4 Hz; J_2 = 6.4 Hz, 1H), 7.62-7.76 (m, 3H), 7.51-7.55 (m, 1H), 7.44 (dd, J_1 = 4.0 Hz; J_2 = 8.4 Hz, 2H), 6.54 (s, 1H), 1.93 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 161.8, 149.5, 134.4, 130.5, 130.3, 128.0, 127.2, 127.1, 126.3, 125.1, 124.4, 124.4, 123.9, 123.3, 120.9, 119.9, 119.7, 103.5, 19.1. HRMS (EITOF) calcd for C₁₉H₁₄N₂O (M⁺): 286.1106, found: 286.1100.

2-(quinolin-8-yl)-3-(trimethylsilyl)isoquinolin-1(2H)-one (3f)

Rf 0.24 (hexane/EtOAc = 10/1). 64%, 22.0 mg. White solid; ¹H NMR (CDCl₃, 400 MHz) δ 8.88 (dd, J_1 = 1.6 Hz; J_2 = 4.0 Hz, 1H), 8.42 (d, J = 8.0 Hz, 1H), 8.22 (dd, J_1 = 1.6 Hz; J_2 = 8.4 Hz, 1H), 7.97 (dd, J_1 = 1.6 Hz; J_2 = 8.0 Hz, 1H), 7.65-7.73 (m, 3H), 7.59 (d, J = 8.0 Hz, 1H), 7.49-7.53 (m, 1H), 7.42 (dd, J_1 = 4.0 Hz; J_2 = 8.0 Hz, 1H), 6.91 (s, 1H), -0.27 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz) δ 163.9, 151.5, 147.0, 145.7, 139.5, 137.1, 136.4, 132.6, 130.7, 129.7, 129.4, 128.2, 127.5, 126.6, 126.4, 126.2, 122.1, 115.7, 0.02. HRMS (EI-TOF) calcd for C₂₁H₂₀N₂OSi (M⁺): 344.1345, found: 344.1345.

8-methyl-3-phenyl-2-(quinolin-8-yl)isoquinolin-1(2H)-one (4a)

Rf 0.39 (hexane/EtOAc = 5/1). 80%, 29.0 mg. White solid; ¹H NMR (CDCl₃, 400 MHz) δ 8.91 (dd, J_1 = 1.6 Hz; J_2 = 4.0 Hz, 1H), 8.07 (dd, J_1 = 1.6 Hz; J_2 = 8.0 Hz, 1H), 7.70 (dd, J_1 = 1.2 Hz; J_2 = 8.0 Hz, 1H), 7.50-7.54 (m, 2H), 7.40-7.44 (m, 2H), 7.35 (dd, J_1 = 4.0 Hz; J_2 = 8.0 Hz, 1H), 7.24-7.26 (m, 1H), 7.09-7.11 (m, 2H), 6.98-7.00 (m, 1H), 6.91-6.95 (m, 2H), 6.58 (s, 1H), 2.90 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 164.1, 150.9, 144.9, 144.3, 142.5, 139.1, 137.8, 136.3, 136.1, 132.0, 130.9, 129.9, 128.9, 128.7, 128.5, 127.9, 127.3, 125.9, 124.6, 123.9, 121.6, 107.9, 24.0. HRMS (EI-TOF) calcd for C₂₅H₁₈N₂O (M⁺): 362.1419, found: 362.1413.

7-methyl-3-phenyl-2-(quinolin-8-yl)isoquinolin-1(2H)-one (4b)

Rf 0.39 (hexane/EtOAc = 5/1). 61%, 22.1 mg. White solid; ¹H NMR (CDCl₃, 400 MHz) δ 8.90 (dd, J_1 = 1.6 Hz; J_2 = 4.0 Hz, 1H), 8.27 (s, 1H), 8.08 (dd, J_1 = 1.6 Hz; J_2 = 8.0 Hz, 1H), 7.70-7.72 (m, 1H), 7.51 (s, 2H), 7.42-7.49 (m, 1H), 7.40 (d, J = 8.0 Hz, 1H), 7.35 (dd, J_1 = 4.0 Hz; J_2 = 8.0 Hz, 1H), 7.08-7.12 (m, 2H), 6.99-7.03 (m, 1H), 6.93 (t, J = 7.2 Hz, 2H), 6.62 (s, 1H), 2.50 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 161.0, 148.7, 148.7, 142.6, 141.3, 135.2, 134.5, 134.2, 133.9, 132.7, 131.9, 128.5, 126.6, 126.4, 125.8, 125.6, 125.0, 123.9, 123.6, 123.2, 119.3, 105.2, 19.4. HRMS (EITOF) calcd for C₂₅H₁₈N₂O (M⁺): 362.1419, found: 362.1412.

6-methyl-3-phenyl-2-(quinolin-8-yl)isoquinolin-1(2H)-one (4c)

Rf 0.26 (hexane/EtOAc = 5/1). 69%, 25.0 mg. Yellow solid; ¹H NMR (CDCl₃, 400 MHz) δ 8.91 (dd, J_1 = 1.6 Hz; J_2 = 4.0 Hz, 1H), 8.36 (d, J = 8.0 Hz, 1H), 8.09 (dd, J_1 = 1.6 Hz; J_2 = 8.4 Hz, 1H), 7.71 (dd, J_1 = 1.2 Hz; J_2 = 8.0 Hz, 1H), 7.45-7.49 (m, 1H), 7.38-7.43 (m, 2H), 7.32-7.37 (m, 2H), 7.10 (d, J = 7.2 Hz, 2H), 7.00-7.03 (m, 1H), 6.92-6.96 (m, 2H), 6.58 (s, 1H), 2. 52 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 163.3, 150.9, 144.8, 144.5, 143.2, 137.4, 136.4, 136.1, 130.8, 128.8, 128.6, 128.4, 128.4, 127.9, 127.3, 126.7, 126.2, 125.9, 125.8, 123.3, 121.5, 107.4, 21.9. HRMS (EI-TOF) calcd for C₂₅H₁₈N₂O (M⁺): 362.1419, found: 362.1419.

6-methoxy-3-phenyl-2-(quinolin-8-yl)isoquinolin-1(2H)-one (4d)

Rf 0.15 (hexane/EtOAc = 10/1). 84%, 31.8 mg.White solid; ¹H NMR (CDCl₃, 400 MHz) δ 8.91 (dd, J_1 = 1.6 Hz; J_2 = 4.4 Hz, 1H), 8.38 (d, J = 8.8 Hz, 1H), 8.07 (dd, J_1 = 1.6 Hz; J_2 = 4.4 Hz, 1H), 7.70 (dd, J_1 = 1.2 Hz; J_2 = 8.4 Hz, 1H), 7.48 (dd, J_1 = 1.6 Hz; J_2 = 7.2 Hz, 1H), 7.34-7.42 (m, 2H), 7.06-7.11 (m, 3H), 7.01 (t, J = 7.6 Hz, 1H), 6.92-6.96 (m, 3H), 6.57 (s, 1H), 3.93 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 163.2, 163.0, 150.9, 145.1, 144.8, 139.3, 137.3, 136.4, 136.2, 130.9, 130.6, 128.8, 128.8, 128.7, 128.0, 127.3, 125.8, 121.5, 119.3, 116.2, 107.4, 107.0, 55.6. HRMS (EI-TOF) calcd for C₂₅H₁₈N₂O₂ (M⁺): 378.1368, found: 378.1365.

6-(tert-butyl)-3-phenyl-2-(quinolin-8-yl)isoquinolin-1(2H)-one (4e)

Rf 0.12 (hexane/EtOAc = 10/1). 46%, 18.6 mg. White solid; ¹H NMR (CDCl₃, 400 MHz) δ 8.89 (dd, J_1 = 1.6 Hz; J_2 = 4.0 Hz, 1H), 8.40 (d, J = 7.6 Hz, 1H), 8.08 (dd, J_1 = 1.6 Hz; J_2 = 8.4 Hz, 1H), 7.71 (dd, J_1 = 1.6 Hz; J_2 = 8.0 Hz, 1H), 7.57-7.59 (m, 2H), 7.45-7.50 (m, 1H), 7.39-7.43 (m, 1H), 7.36 (dd, J_1 = 4.0 Hz; J_2 = 8.4 Hz, 1H), 7.09-7.11 (m, 2H), 7.01 (d, J = 7.6 Hz, 1H), 6.92-6.96 (m, 2H), 6.95 (s, 1H), 1.42 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz) δ 163.2, 156.2, 150.9, 144.4, 137.2, 136.5, 136.1, 130.8, 130.0, 128.8, 128.8, 128.6, 128.6, 128.2, 127.9, 127.3, 125.8, 124.9, 123.2, 122.2, 121.5, 107.8, 35.2, 31.2. HRMS (EI-TOF) calcd for C₂₈H₂₄N₂O (M⁺): 404.1889, found: 404.1889.

6,7-dimethoxy-3-phenyl-2-(quinolin-8-yl)isoquinolin-1(2H)-one (4f)

Rf 0.13 (hexane/EtOAc = 10/1). 74%, 30.2 mg. White solid; ¹H NMR (CDCl₃, 400 MHz) δ 8.92 (dd, J_1 = 1.6 Hz; J_2 = 4.0 Hz, 1H), 8.10 (dd, J_1 = 1.6 Hz; J_2 = 8.0 Hz, 1H), 7.87 (s, 1H), 7.72 (dd, J_1 = 1.6 Hz; J_2 = 8.0 Hz, 1H), 7.42-7.47 (m, 2H), 7.36-7.40 (m, 2H), 7.08-7.10 (m, 2H), 7.02 (t, J = 7.2 Hz, 1H), 6.93-6.97 (m, 2H), 6.59 (s, 1H), 4.02 (s, 3H), 3.99 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 160.3, 151.6, 148.7, 142.7, 140.9, 135.3, 134.2, 133.9, 130.5, 128.4, 131.9, 126.6, 126.5, 126.4, 125.6, 125.1, 123.6, 119.2, 117.1, 106.1, 104.8, 104.1, 53.9, 53.9. HRMS (EI-TOF) calcd for C₂₆H₂₀N₂O₃ (M⁺): 408.1474, found: 408.1468.

7-iodo-3-phenyl-2-(quinolin-8-yl)isoquinolin-1(2H)-one (4g)

Rf 0.12 (hexane/EtOAc = 10/1). 65%, 30.8 mg. White solid; ¹H NMR (CDCl₃, 400 MHz) δ 8.90 (dd, J_1 = 1.6 Hz; J_2 = 4.0 Hz, 1H), 8.80 (d, J = 1.6 Hz, 1H), 8.10 (dd, J_1 = 1.6 Hz; J_2 = 8.4 Hz, 1H), 7.96 (dd, J_1 = 1.6 Hz; J_2 = 8.4 Hz, 1H), 7.73 (dd, J_1 = 1.2 Hz; J_2 = 8.0 Hz, 1H), 7.33-7.48 (m, 4H), 7.13 (d, J = 8.4 Hz, 2H), 7.01-7.09 (m, 1H), 6.95 (t, J = 7.6 Hz, 2H), 6.59 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ 161.8, 150.9, 145.4, 144.5, 141.3, 137.3, 137.0, 136.4, 136.2, 136.0, 130.6, 128.9, 128.8, 128.7, 128.2, 127.8, 127.4, 127.0, 125.9, 121.6, 106.9, 91.2. HRMS (EI-TOF) calcd for C₂₄H₁₅IN₂O (M⁺): 474.0229, found: 474.0227.

7-bromo-3-phenyl-2-(quinolin-8-yl)isoquinolin-1(2H)-one (4h)

Rf 0.12 (hexane/EtOAc = 10/1). 38%, 16.2 mg. White solid; ¹H NMR (CDCl₃, 400 MHz) δ 8.91 (dd, J_1 = 1.6 Hz; J_2 = 4.0 Hz, 1H), 8.26 (d, J = 8.0 Hz, 1H), 8.10 (dd, J_1 = 1.6 Hz; J_2 = 8.0 Hz, 1H), 7.74 (dd, J_1 = 1.6 Hz; J_2 = 8.0 Hz, 1H), 7.37-7.50 (m, 5H), 7.10-7.12 (m, 2H), 7.02-7.06 (m, 1H), 6.94-6.98 (m, 2H), 6.87 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ 159.2, 151.0, 145.2, 144.6, 137.1, 136.1, 136.1, 130.6, 128.9, 128.8, 128.2, 127.4, 126.8, 126.8, 125.8, 124.1, 124.1, 121.6, 117.6, 117.4, 99.9, 99.8. HRMS (EI-TOF) calcd for C₂₄H₁₅BrN₂O (M⁺): 426.0368, found: 426.0367.

6-chloro-3-phenyl-2-(quinolin-8-yl)isoquinolin-1(2H)-one (4i)

Rf 0.12 (hexane/EtOAc = 10/1). 78%, 29.8 mg. White solid; ¹H NMR (CDCl₃, 400 MHz) δ 8.92 (dd, J_1 = 1.6 Hz; J_2 = 4.0 Hz, 1H), 8.40 (d, J = 8.8 Hz, 1H), 8.10 (dd, J_1 = 1.6 Hz; J_2 = 8.4 Hz, 1H), 7.74 (dd, J_1 = 1.6 Hz; J_2 = 8.0 Hz, 1H), 7.59 (d, J = 2.0 Hz, 1H), 7.38-7.50 (m, 4H), 7.09-7.11 (m, 2H), 7.02-7.06 (m, 1H), 6.96 (t, J = 7.2 Hz, 2H), 6.57 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ 162.7, 151.0, 146.0, 144.6, 139.1, 138.5, 137.0, 136.2, 135.9, 130.7, 130.3, 128.9, 128.8, 128.7, 128.2, 127.4, 127.2, 125.9, 125.4, 123.8, 121.6, 106.4. HRMS (EI-TOF) calcd for C₂₄H₁₅ClN₂O (M⁺): 382.0873, found: 382.0873.

7-chloro-3-phenyl-2-(quinolin-8-yl)isoquinolin-1(2H)-one (4j)

Rf 0.12 (hexane/EtOAc = 10/1). 49%, 18.7 mg. White solid; ¹H NMR (CDCl₃, 400 MHz) δ 8.91 (dd, J_1 = 1.6 Hz; J_2 = 4.0 Hz, 1H), 8.44 (d, J = 2.0 Hz, 1H), 8.10 (dd, J_1 = 1.6 Hz; J_2 = 8.4 Hz, 1H), 7.73 (dd, J_1 = 1.2 Hz; J_2 = 8.0 Hz, 1H), 7.64 (dd, J_1 = 2.0 Hz; J_2 = 7.6 Hz, 1H), 7.55 (d, J = 8.4 Hz, 1H), 7.37-7.49 (m, 3H), 7.07-7.09 (m, 2H), 7.03 (t, J = 7.6 Hz, 1H), 6.95 (t, J = 7.6 Hz, 2H), 6.62 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ 162.2, 151.0, 144.9, 144,6, 137.0, 136.2, 136.0, 135.7, 133.2, 132.6, 130.7, 128.9, 128.8, 128.7, 128.2, 127.9, 127.8, 127.4, 126.6, 125.9, 121.6, 106.8. HRMS (EI-TOF) calcd for C₂₄H₁₅ClN₂O (M⁺): 382.0873, found: 382.0870.

8-chloro-3-phenyl-2-(quinolin-8-yl)isoquinolin-1(2H)-one (4k)

Rf 0.12 (hexane/EtOAc = 10/1). 41%, 15.7 mg. White solid; ¹H NMR (CDCl₃, 400 MHz) δ 8.91 (dd, J_1 = 1.6 Hz; J_2 = 4.0 Hz, 1H), 8.09 (dd, J_1 = 1.2 Hz; J_2 = 8.4 Hz, 1H), 7.72 (dd, J_1 = 1.2 Hz; J_2 = 8.0 Hz, 1H), 7.36-7.53 (m, 6H), 7.10-7.12 (m, 2H), 7.02 (d, J = 7.2 Hz, 1H), 6.93-6.97 (m, 2H), 6.59 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ 161.5, 150.9, 145.5, 144.6, 140.4, 140.0, 137.1, 136.1, 135.9, 132.4, 131.0, 129.9. 128.9, 128.7, 128.6, 128.2, 127.4, 125.9, 125.5, 121.9, 121.6, 107.0. HRMS (EI-TOF) calcd for C₂₄H₁₅ClN₂O (M⁺): 382.0873, found: 382.0873.

5-fluoro-3-phenyl-2-(quinolin-8-yl)isoquinolin-1(2H)-one (4l)

Rf 0.12 (hexane/EtOAc = 10/1). 51%, 18.7 mg. White solid; ¹H NMR (CDCl₃, 400 MHz) δ 8.91 (dd, J_1 = 1.6 Hz; J_2 = 4.4 Hz, 1H), 8.26 (d, J = 7.6 Hz, 1H), 8.10 (dd, J_1 = 1.6 Hz; J_2 = 8.0 Hz, 1H), 7.74 (dd, J_1 = 1.6 Hz; J_2 = 8.0 Hz, 1H), 7.37-7.50 (m, 5H), 7.10-7.12 (m, 2H), 7.02-7.04 (m, 1H), 6.94 (t, J = 7.2 Hz, 2H), 6.87 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ 162.4, 162.3, 157.9 (d, J_{C-F} = 250.1 Hz), 151.0, 144.9 (d, J_{C-F} = 65.5 Hz), 137.0, 136.2, 136.1, 130.7, 128.9, 128.8, 128.2. 127.4, 127.2, 127.1, 126.8 (d, J_{C-F} = 7.3 Hz), 125.9, 124.1, 124.1, 121.6, 117.5 (d, J_{C-F} = 20.3 Hz), 99.8 (d, J_{C-F} = 5.3 Hz). HRMS (EI-TOF) calcd for C₂₄H₁₅FN₂O (M⁺): 366.1168, found: 366.1160. According to the ¹H and ¹³C NMRs, there is no single peak in aromatic area of ¹H NMR, herein, the C-H activation occur at the *ortho*-position to F.

3-phenyl-2-(quinolin-8-yl)benzo[h]isoquinolin-1(2H)-one (4m)

Rf 0.12 (hexane/EtOAc = 10/1). 45%, 17.9 mg. White solid; ¹H NMR (CDCl₃, 400 MHz) δ 10.12 (d, *J* = 8.8 Hz, 1H), 8.98-9.04 (m, 2H), 8.12-8.16 (m, 2H), 8.02-8.07 (m, 2H), 7.87-7.92 (m, 2H), 7.36-7.60 (m, 3H), 7.03-7.18 (m, 3H), 6.98 (t, *J* = 7.6 Hz, 2H), 6.80 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ 163.7, 151.0, 147.6, 147.1, 145.8, 139.2, 134.3, 134.1, 136.5, 132.5, 131.0, 128.8, 128.6, 128.4, 128.2, 127.9, 127.4, 126.2, 126.1, 126.0, 125.0, 124.5, 124.0, 121.7, 119.1, 108.3. HRMS (EI-TOF) calcd for C₂₈H₁₈N₂O (M⁺): 398.1419, found: 398.1422.

3-phenyl-2-(quinolin-8-yl)benzo[g]isoquinolin-1(2H)-one (4n)

Rf 0.12 (hexane/EtOAc = 10/1). 68%, 27.1 mg. White solid; ¹H NMR (CDCl₃, 400 MHz) δ 9.08 (s, 1H), 8.91 (dd, $J_1 = 1.6$ Hz; $J_2 = 4.0$ Hz, 1H), 8.06-8.10 (m, 3H), 7.96 (d, J = 8.0 Hz, 1H), 7.72 (d, J = 8.0 Hz, 1H), 7.59 (t, J = 7.6 Hz, 1H), 7.48-7.57 (m, 2H), 7.35-7.44 (m, 2H), 7.12-7.15 (m, 2H), 7.03 (t, J = 7.6 Hz, 1H), 6.96 (t, J = 7.6 Hz, 2H), 6.76 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ 163.8, 150.9, 144,9, 143.5, 137.4, 136.6, 136.1, 135.8, 133.3, 132.0, 130.9, 131.6, 129.9, 129.8, 128.8, 128.7, 128.1, 127.9, 127.6, 127.3, 125.9, 125.8, 124.2, 121.5, 107.6. HRMS (EI-TOF) calcd for C₂₈H₁₈N₂O (M⁺): 398.1419, found: 398.1413.

5-phenyl-6-(quinolin-8-yl)thieno[2,3-c]pyridin-7(6H)-one (40)

Rf 0.12 (hexane/EtOAc = 10/1). 92%, 32.4 mg. White solid; ¹H NMR (CDCl₃, 400 MHz) δ 8.91 (dd, J_1 = 1.6 Hz; J_2 = 4.0 Hz, 1H), 8.08 (dd, J_1 = 1.2 Hz; J_2 = 8.4 Hz, 1H), 7.75 (d, J = 5.2 Hz, 1H), 7.72 (dd, J_1 = 1.2 Hz; J_2 = 8.4 Hz, 1H), 7.50 (dd, J_1 = 1.2 Hz; J_2 = 7.2 Hz, 1H), 7.34-7.43 (m, 2H), 7.29 (d, J = 5.2 Hz, 1H), 7.08-7.10 (m, 2H), 7.00-7.02 (m, 1H), 6.94 (t, J = 7.2 Hz, 2H), 6.79 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ 159.2, 151.0, 146.1, 145.4, 144.7, 136.9, 136.3, 136.1, 134.0, 130.9, 129.4, 128.9, 128.9, 128.8, 128.0, 127.3, 125.8, 124.6, 121.6, 104.5. HRMS (EI-TOF) calcd for C₂₂H₁₄N₂OS (M⁺): 354.0827, found: 354.0833.

5-phenyl-6-(quinolin-8-yl)furo[2,3-c]pyridin-7(6H)-one (4p)

Rf 0.12 (hexane/EtOAc = 10/1). 45%, 15.2 mg. White solid; ¹H NMR (CDCl₃, 400 MHz) δ 8.91 (dd, J_1 = 1.6 Hz; J_2 = 4.4 Hz, 1H), 8.09 (dd, J_1 = 1.6 Hz; J_2 = 8.0 Hz, 1H), 7.82 (d, J = 2.0 Hz, 1H), 7.73 (dd, J_1 = 1.2 Hz; J_2 = 8.0 Hz, 1H), 7.50 (dd, J_1 = 1.2 Hz; J_2 = 7.2 Hz, 1H), 7.36-7.44 (m, 2H), 6.98-7.05 (m, 3H), 6.92 (t, J = 7.2 Hz, 2H), 6.77 (d, J = 2.0 Hz, 1H), 6.60 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ 154.0, 151.0, 148.6, 145.5, 144.6, 143.0, 136.6, 136.3, 136.2, 133.1, 131.0, 129.0, 128.9, 128.8, 128.0, 127.2, 125.8, 121.6, 107.6, 101.7. HRMS (EI-TOF) calcd for C₂₂H₁₄N₂O₂ (M⁺): 338.1005, found: 338.1008.

3-phenyl-2-(quinolin-8-yl)-5,6,7,8-tetrahydroisoquinolin-1(2H)-one (6a)

Rf 0.24 (hexane/EtOAc = 10/1). 53%, 18.7 mg. White solid; ¹H NMR (CDCl₃, 400 MHz) δ 8.94 (dd, J_1 = 1.2 Hz; J_2 = 4.0 Hz, 1H), 8.08 (dd, J_1 = 1.2 Hz; J_2 = 8.4 Hz, 1H), 7.69-7.73 (m, 1H), 7.35-7.44 (m, 3H), 6.98-7.04 (m, 3H), 6.92 (t, J = 7.6 Hz, 2H), 6.12 (s, 1H), 2.63-2.67 (m, 4H), 1.83 (s, 4H). ¹³CNMR (CDCl₃, 100 MHz) δ 163.3, 151.0, 147.6, 145.7, 144.6, 137.2, 136.2, 136.0, 130.5, 128.8, 128.6, 128.6, 128.0, 127.3, 126.4, 125.8, 121.5, 109.9, 29.5, 23.9, 22.3, 22.1. HRMS (EI-TOF) calcd for C₂₄H₂₀N₂O (M⁺): 352.1576, found: 352.1577.

3,4-dimethyl-6-phenyl-1-(quinolin-8-yl)pyridin-2(1H)-one (6b)

Rf 0.24 (hexane/EtOAc = 10/1). 43%, 14.0 mg. White solid; ¹H NMR (CDCl₃, 400 MHz) δ 8.94 (dd, J_1 = 1.6 Hz; J_2 = 4.0 Hz, 1H), 8.08 (dd, J_1 = 1.6 Hz; J_2 = 8.0 Hz, 1H), 7.71 (dd, J_1 = 2,0 Hz; J_2 = 7.6 Hz, 1H), 7.35-7.44 (m, 3H), 7.00-7.04 (m, 3H), 6.93 (t, J = 7.6 Hz, 2H), 6.20 (s, 1H), 2.30 (s, 3H), 2.20 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 163.5, 151.1, 146.4, 145.8, 144.6, 137.5, 136.1, 135.9, 130.3, 128.8, 128.6, 128.6, 128.0, 127.3, 125.8, 125.2, 121.5, 111.0, 20.1, 12.8. HRMS (EI-TOF) calcd for C₂₂H₁₈N₂O (M⁺): 326.1419, found: 326.1425.

4-ethyl-3-methyl-6-phenyl-1-(quinolin-8-yl)pyridin-2(1H)-one (6c)

Rf 0.24 (hexane/EtOAc = 10/1). 71%, 24.1 mg. White solid; ¹H NMR (CDCl₃, 400 MHz) δ 8.93 (dd, J_1 = 2.0 Hz; J_2 = 4.4 Hz, 1H), 8.07 (dd, J_1 = 1.6 Hz; J_2 = 8.0 Hz, 1H), 7.69 (dd, J_1 = 1.6 Hz; J_2 = 8.0 Hz, 1H), 7.34-7.43 (m, 3H), 6.98-7.05 (m, 3H), 6.91-6.95 (m, 2H), 6.21 (s, 1H), 2.56-2.73 (m, 2H), 2.21 (s, 3H), 1.28 (t, J = 8.0 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 163.8, 151.7, 151.0, 146.2, 144.6, 137.6, 136.1, 136.1, 130.3, 128.8, 128.6, 128.6, 128.0, 127.3, 125.8, 124.4, 121.5, 109.2, 26.8, 13.4, 12.3. HRMS (EI-TOF) calcd for C₂₃H₂₀N₂O (M⁺): 340.1576, found: 340.1576

3-methyl-4,6-diphenyl-1-(quinolin-8-yl)pyridin-2(1H)-one (6d)

Rf 0.24 (hexane/EtOAc = 10/1). 42%, 16.3 mg. White solid; ¹H NMR (CDCl₃, 400 MHz) δ 9.00 (dd, J_1 = 1.6 Hz; J_2 = 4.0 Hz, 1H), 8.12 (dd, J_1 = 1.6 Hz; J_2 = 8.4 Hz, 1H), 7.74 (dd, J_1 = 1.2 Hz; J_2 = 8.0 Hz, 1H), 7.39-7.51 (m, 8H), 7.07-7.09 (m, 2H), 7.01 (d, J = 7.2 Hz, 1H), 6.92-6.96 (m, 2H), 6.34 (s, 1H), 2.21 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 164.1, 151.1, 149.5, 146.2, 144.6, 139.8, 137.5, 136.2, 135.9, 130.3, 128.8, 128.6, 128.6, 128.4, 128.1, 128.0, 127.4, 125.9, 125.1, 121.6, 110.1, 14.6. HRMS (EI-TOF) calcd for C₂₇H₂₀N₂O (M⁺): 388.1576, found: 388.1577.

3-(2-chlorophenyl)-6-phenyl-1-(quinolin-8-yl)pyridin-2(1H)-one (6e)

Rf 0.28 (hexane/EtOAc = 10/1). 81%, 33.0 mg. White solid; ¹H NMR (CDCl₃, 400 MHz) δ 8.93 (dd, J_1 = 1.6 Hz; J_2 = 7.6 Hz, 1H), 8.06 (dd, J_1 = 1.6 Hz; J_2 = 8.0 Hz, 1H), 7.67-7.72 (m, 2H), 7.50-7.57 (m, 2H), 7.35-7.45 (m, 3H), 7.21-7.27 (m, 2H), 7.11-7.13 (m, 2H), 7.05 (t, J = 7.2 Hz, 1H), 6.96-6.99 (m, 2H), 6.43 (d, J = 7.2 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ 161.8, 151.0, 150.6, 140.1, 137.0, 136.0, 135.8, 135.7, 133.7, 132.1, 130.3, 129.6, 129.0, 129.0, 128.9, 128.8, 128.8, 128.5, 128.4, 127.5, 126.4, 125.8, 121.6, 106.9. HRMS (EI-TOF) calcd for C₂₆H₁₇ClN₂O (M⁺): 408.1029, found: 408.1035.

3-(3-chlorophenyl)-6-phenyl-1-(quinolin-8-yl)pyridin-2(1H)-one (6f)

Rf 0.28 (hexane/EtOAc = 10/1). 79%, 32.2 mg. White solid; ¹H NMR (CDCl₃, 400 MHz) δ 8.92 (dd, J_1 = 1.6 Hz; J_2 = 4.0 Hz, 1H), 8.06 (dd, J_1 = 1.6 Hz; J_2 = 8.0 Hz, 1H), 7.66-7.71 (m, 2H), 7.50-7.56 (m, 2H), 7.34-7.45 (m, 3H), 7.21-7.29 (m, 2H), 7.11-7.13 (m, 2H), 7.04 (t, J = 7.2 Hz, 1H), 6.97 (t, J = 7.2 Hz, 2H), 6.43 (d, J = 6.8 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ 161.7, 150.9, 150.5, 144.2, 140.0, 136.9, 135.9, 135.6, 135.6, 133.6, 132.0, 130.2, 129.4, 128.9, 128.7, 128.7, 128.6, 128.4, 128.3, 127.3, 126.2, 125.6, 121.5, 106.7. HRMS (EI-TOF) calcd for C₂₆H₁₇ClN₂O (M⁺): 408.1029, found: 408.1022.

3-(4-chlorophenyl)-6-phenyl-1-(quinolin-8-yl)pyridin-2(1H)-one (6g)

Rf 0.29 (hexane/EtOAc = 5/1). 86%, 35.1 mg. White solid; ¹H NMR (CDCl₃, 400 MHz) δ 8.94 (dd, J_1 = 1.6 Hz; J_2 = 4.4 Hz, 1H), 8.09 (dd, J_1 = 1.6 Hz; J_2 = 8.4 Hz, 1H), 7.67-7.79 (m, 4H), 7.37-7.49 (m, 4H), 6.95-7.10 (m, 6H), 6.45 (d, J = 7.2 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ 161.7, 151.2, 151.1, 144.2, 140.6, 140.5, 136.9, 136.2, 135.4, 130.1, 129.1, 129.0, 128.8, 128.6, 128.4, 127.5, 126.0, 125.8, 122.8, 121.8, 119.8, 107.2. HRMS (EI-TOF) calcd for C₂₆H₁₇ClN₂O (M⁺): 408.1029, found: 408.1029.

4,6-diphenyl-1-(quinolin-8-yl)pyridin-2(1H)-one (6h)

Rf 0.29 (hexane/EtOAc = 5/1). 65%, 24.3 mg. White solid; ¹H NMR (CDCl₃, 400 MHz) δ 8.96 (s, 1H), 8.09 (d, *J* = 8.0 Hz, 1H), 7.72 (d, *J* = 4.4 Hz, 3H), 7.38-7.50 (m, 6H), 6.94-7.11 (m, 6H), 6.60 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ 151.8 151.1, 150.4, 148.4, 144.4, 137.8, 136.2, 135.9, 130.5, 129.5, 129.0, 129.0, 128.9, 128.5, 128.4, 127.4, 127.0, 125.9, 122.1, 121.7, 116.7, 107.5. HRMS (EI-TOF) calcd for C₂₆H₁₈N₂O (M⁺): 374.1419, found: 374.1420.

3,6-diphenyl-1-(quinolin-8-yl)pyridin-2(1H)-one (6i)

Rf 0.22 (hexane/EtOAc = 10/1). 55%, 20.6 mg. White solid; ¹H NMR (CDCl₃, 400 MHz) 8.94 (dd, $J_1 = 1.6$ Hz; $J_2 = 4.4$ Hz, 1H), 8.09 (dd, $J_1 = 1.6$ Hz; $J_2 = 8.4$ Hz, 1H), 7.82 (d, J = 7.2 Hz, 2H). 7.71-7.76 (m, 2H), 7.50 (dd, $J_1 = 0.8$ Hz; $J_2 = 3.2$ Hz, 1H), 7.26-7.44 (m, 5H), 7.03-7.10 (m, 3H), 6.96 (t, J = 7.2 Hz, 2H), 6.44 (d, J = 7.2 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ 162.4, 151.1, 149.7, 144.4, 137.9, 137.3, 136.9, 136.1, 135.8, 130.3, 129.0, 128.8, 128.5, 128.3, 128.1, 128.0, 127.5, 127.5, 126.0, 125.8, 121.6, 107.6. HRMS (EI-TOF) calcd for C₂₆H₁₈N₂O (M⁺): 374.1419, found: 374.1423.

3-methyl-6-phenyl-1-(quinolin-8-yl)pyridin-2(1H)-one (6j)

Rf 0.44 (hexane/EtOAc = 10/1). 77%, 24.0 mg. White solid; ¹H NMR (CDCl₃, 400 MHz) δ 8.94 (dd, J_1 = 1.6 Hz; J_2 = 4.0 Hz, 1H), 8.08 (d, J = 7.6 Hz, 1H), 7.71 (dd, J_1 = 1.6 Hz; J_2 = 8.0 Hz, 1H). 7.36-7.45 (m, 4H), 6.99-7.03 (m, 3H), 6.91-6.94 (m, 2H), 6.27 (d, J = 7.2 Hz, 1H), 2.25 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 163.8, 151.0, 147.9, 144.4, 137.3, 137.3, 136.2, 135.9, 131.0, 130.3, 128.8, 128.7, 128.6, 128.1, 127.4, 125.8, 121.6, 107.2, 17.3. HRMS (EI-TOF) calcd for C₂₁H₁₆N₂O (M⁺): 312,1263, found: 312.1267.

Rf 0.44 (hexane/EtOAc = 10/1). 76%, 31.9 mg. White solid; ¹H NMR (CDCl₃, 400 MHz) δ 8.93 (dd, J_1 = 1.6 Hz; J_2 = 4.0 Hz, 1H), 8.56 (dd, J_1 = 1.6 Hz; J_2 = 8.0 Hz, 1H),

8.07 (d, J = 7.6 Hz, 1H). 8.00 (d, J = 8.4 Hz, 1H), 7.69-7.74 (m, 1H), 7.64 (t, J = 4.8 Hz, 1H), 7.49-7.3 (m, 1H), 7.33-7.39 (m, 3H), 7.18 (d, J = 7.6 Hz, 1H), 7.04-7.08 (m, 1H), 6.95 (t, J = 7.6 Hz, 1H), 6.87 (d, J = 7.6 Hz, 1H), 6.63 (t, J = 7.2 Hz, 1H), 0.00 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz) δ 160.9, 148.4, 147.2, 138.5, 135.5, 135.2, 134.2, 129.6, 129.2, 129.1, 127.9, 126.7, 126.5, 126.3, 126.1, 125.5, 124.8, 124.5, 124.0, 123.7, 119.3, 109.5, 0.01. HRMS (EI-TOF) calcd forC₂₇H₂₄N₂OSi (M⁺): 420.1658, found: 420.1654.

3-(4-bromophenyl)-2-(quinolin-8-yl)-4-(trimethylsilyl)isoquinolin-1(2H)-one (7b)

Rf 0.20 (hexane/EtOAc = 10/1). 81%, 40.3 mg. White solid; ¹H NMR (CDCl₃, 400 MHz) δ 8.88 (dd, J_1 = 1.6 Hz; J_2 = 4.0 Hz, 1H), 8.54 (dd, J_1 = 1.2 Hz; J_2 = 8.0 Hz, 1H), 8.06 (dd, J_1 = 1.6 Hz; J_2 = 8.4 Hz, 1H). 7.98 (d, J = 8.0 Hz, 1H), 7.66-7.71 (m, 2H), 7.51 (t, J = 7.2 Hz, 1H), 7.34-7.37 (m, 3H), 7.20 (d, J = 8.4 Hz, 1H), 7.05 (d, J = 8.0 Hz, 1H), 6.77 (s, 2H), 0.02 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz) δ 160.6, 148.5, 145.7, 142.4, 138.1, 135.2, 134.0, 133.9, 130.6, 129.5, 129.4, 128.7, 127.9, 127.5, 126.6, 126.5, 125.3, 124.1, 123.5, 120.2, 119.3, 109.6, 0.01. HRMS (EI-TOF) calcd for C₂₇H₂₃BrN₂OSi (M⁺): 498.0763, found: 498.0763.

3-(3-chlorophenyl)-2-(quinolin-8-yl)-4-(trimethylsilyl)isoquinolin-1(2H)-one (7c) 4-(3-chlorophenyl)-2-(quinolin-8-yl)-3-(trimethylsilyl)isoquinolin-1(2H)-one (7c')

The ratio of two isomers was 1:1 as determined by ¹H NMR. Rf 0.20 (hexane/EtOAc

= 10/1). 90%, 40.9 mg. White solid; ¹H NMR (CDCl₃, 400 MHz, a mixture of two isomer) δ 8.93 (dd, $J_1 = 1.6$ Hz; $J_2 = 4.0$ Hz, 1H), 8.88 (dd, $J_1 = 1.6$ Hz; $J_2 = 4.0$ Hz, 1H), 8.54-8.57 (m, 2H), 8.04-8.08 (m, 2H), 8.00 (d, J = 8.4 Hz, 2H), 7.70-7.74 (m, 2H), 7.65-7.67 (m, 2H), 7.50-7.54 (m, 2H), 7.34-7.40 (m, 6H), 7.19 (t, J = 1.6 Hz, 1H), 7.03 (d, J = 7.6 Hz, 1H), 6.90-6.97 (m, 4H), 6.77 (d, J = 8.0 Hz, 1H), 6.56 (t, J = 8.0 Hz, 1H), 0.03 (s, 18H). ¹³C NMR (CDCl₃, 100 MHz) δ 160.7, 160.6, 148.6, 148.6, 145.5, 145.4, 142.5, 142.4, 138.1, 136.7, 136.5, 135.2, 133.9, 130.6, 130.4, 129.6, 129.1, 128.9, 128.7, 128.3, 127.1, 126.6, 126.6, 126.5, 126.5, 126.5, 126.1, 126.1, 126.0, 125.8, 125.7, 125.4, 124.2, 124.0, 123.9, 123.6, 123.5, 119.4, 119.3, 109.7, 109.5, 0.003. HRMS (EI-TOF) calcd for C₂₇H₂₃ClN₂OSi (M⁺): 454.1268, found: 454.1267.

3-(pyridin-2-yl)-2-(quinolin-8-yl)-4-(trimethylsilyl)isoquinolin-1(2H)-one (7d)

Rf 0.20 (hexane/EtOAc = 5/1). 83%. 34.9 mg. White solid; ¹H NMR (CDCl₃, 400 MHz) δ 8.89 (dd, $J_1 = 1.6$ Hz; $J_2 = 4.0$ Hz, 1H), 8.57 (dd, $J_1 = 1.2$ Hz; $J_2 = 8.0$ Hz, 1H), 8.32 (d, J = 4.0 Hz, 1H), 8.03 (dd, $J_1 = 2.8$ Hz; $J_2 = 8.4$ Hz, 2H). 7.70-7.74 (m, 1H), 7.61-7.63 (m, 1H), 7.52 (t, J = 7.2 Hz, 2H), 7.31-7.36 (m, 2H), 7.02 (d, J = 6.8 Hz, 2H), 6.84-6.88 (m, 1H), 0.00 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz) δ 161.1, 153.7, 149.0, 146.4, 145.9, 142.9, 138.7, 135.5, 134.3, 132.9, 130.0, 130.0, 127.1, 126.8, 126.0, 124.7, 124.6, 124.3, 124.0, 121.2, 119.7, 109.9, 0.01. HRMS (EI-TOF) calcd for C₂₆H₂₃N₃OSi (M⁺): 421.1610, found: 421.1605.

3-(prop-1-en-2-yl)-2-(quinolin-8-yl)-4-(trimethylsilyl)isoquinolin-1(2H)-one (7e) 4-(prop-1-en-2-yl)-2-(quinolin-8-yl)-3-(trimethylsilyl)isoquinolin-1(2H)-one (7e')

The ratio of two isomers was 1:1 as determined by ¹H NMR. Rf 0.20 (hexane/EtOAc = 5/1). 57%. 21.9 mg. White solid; ¹H NMR (CDCl₃, 400 MHz, a mixture of two isomer) δ 8.93 (dd, $J_1 = 1.6$ Hz; $J_2 = 4.4$ Hz, 1H), 8.83 (dd, $J_1 = 1.6$ Hz; $J_2 = 4.4$ Hz, 1H), 8.47-8.50 (m, 2H), 8.15-8.22 (m, 2H), 7.88-7.97 (m, 4H), 7.55-7.72 (m, 5H), 7.35-7.47 (m, 5H), 5.20 (s, 1H), 5.07 (s, 1H), 4.84 (s, 1H), 4.54 (s, 1H), 1.74 (s, 3H), 1.15 (s, 3H), 0.43 (d, J = 3.2 Hz, 18H). ¹³C NMR (CDCl₃, 100 MHz) δ 163.4, 162.9, 151.4, 151.1, 151.1, 150.7, 145.4, 145.1, 142.2, 140.8, 140.8, 139.5, 137.6, 137.3, 136.3, 136.0, 131.9, 131.5, 130.3, 129.2, 129.1, 128.8, 128.8, 128.7, 128.7, 127.5, 127.4, 126.0, 125.9, 125.8, 125.8, 125.7, 123.0, 121.9, 121.6, 121.5, 109.9, 108.7, 26.0, 23.3, 3.32, 3.31. HRMS (EI-TOF) calcd for C₂₄H₂₄N₂OSi (M⁺): 384.1658, found: 384.1655.

7-iodo-3-phenyl-2-(quinolin-8-yl)-4-(trimethylsilyl)isoquinolin-1(2H)-one (7f)

Rf 0.20 (hexane/EtOAc = 5/1). 37%. 20.2 mg. White solid; ¹H NMR (CDCl₃, 400 MHz) δ 8.87-8.90 (m, 2H), 8.04 (dd, $J_1 = 1.6$ Hz; $J_2 = 4.0$ Hz, 1H), 7.97 (dd, $J_1 = 2.0$ Hz; $J_2 = 8.8$ Hz, 1H), 7.72 (d, J = 8.4 Hz, 1H), 7.64 (dd, $J_1 = 4.4$ Hz; $J_2 = 6.0$ Hz, 1H), 7.32-7.38 (m, 3H), 7.15 (d, J = 7.6 Hz, 1H), 7.04-7.07 (m, 1H), 6.93-6.96 (m, 1H), 6.81 (d, J = 8.0 Hz, 1H), 6.60-6.64 (m, 1H), -0.03 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz) δ 159.6, 148.7, 148.1, 142.6, 138.3, 137.8, 135.6, 135.0, 134.0, 129.1, 128.9, 127.9, 127.3, 126.6, 126.4, 125.8, 125.0, 124.7, 123.7, 119.5, 109.2, 88.9, 0.01. HRMS (EI-TOF) calcd for C₂₇H₂₃IN₂OSi (M⁺): 546.0624, found: 546.0622.

7-chloro-3-phenyl-2-(quinolin-8-yl)-4-(trimethylsilyl)isoquinolin-1(2H)-one (7g)

Rf 0.20 (hexane/EtOAc = 5/1). 36%. 16.3 mg. White solid; ¹H NMR (CDCl₃, 400 MHz) δ 8.90 (dd, J_1 = 1.6 Hz; J_2 = 4.0 Hz, 1H), 8.50 (d, J = 2.4 Hz, 1H), 8.03-8.06 (m, 1H), 7.94 (d, J = 8.8 Hz, 1H), 7.63-7.66 (m, 2H), 7.32-7.38 (m, 3H), 7.16 (d, J = 7.6 Hz, 1H), 7.04-7.08 (m, 1H), 6.93-6.97 (m, 1H), 6.82 (d, J = 7.6 Hz, 1H), 6.60-6.64 (m, 1H), -0.02 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz) δ 160.0, 148.7, 147.7, 142.6, 137.0, 135.4, 135.0, 134.0, 130.0, 129.2, 128.9, 128.0, 127.1, 126.6, 126.4, 126.1, 125.4, 124.9, 124.6, 123.7, 119.5, 109.1, 0.006. HRMS (EI-TOF) calcd for C₂₇H₂₃ClN₂OSi (M⁺): 454.1268, found: 454.1276.

Rf 0.20 (hexane/EtOAc = 5/1). 76%. 32.4 mg. White solid; ¹H NMR (CDCl₃, 400 MHz) δ 8.91 (dd, J_1 = 1.6 Hz; J_2 = 4.0 Hz, 1H), 8.03 (dd, J_1 = 1.6 Hz; J_2 = 8.8 Hz, 1H), 7.78 (d, J = 5.2 Hz, 1H), 7.63 (dd, J_1 = 1.6 Hz; J_2 = 8.0 Hz, 1H), 7.57 (d, J = 5.2 Hz, 1H), 7.31-7.38 (m, 3H), 7.15 (d, J = 7.6 Hz, 1H), 7.03-7.07 (m, 1H), 6.94 (t, J = 7.6 Hz, 1H), 6.85 (d, J = 7.6 Hz, 1H), 6.61-6.65 (m, 1H), -0.03 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz) δ 157.6, 149.4, 148.8, 147.5, 143.4, 135.9, 135.6, 134.7, 131.5, 129.8, 129.8, 128.5, 127.3, 126.9, 125.6, 125.3, 125.0, 124.3, 120.2, 109.2, 0.017. HRMS (EI-TOF) calcd for C₂₅H₂₂N₂OSSi (M⁺): 426.1222, found: 426.1222

3-methyl-6-phenyl-1-(quinolin-8-yl)-5-(trimethylsilyl)pyridin-2(1H)-one (7i)

Rf 0.20 (hexane/EtOAc = 5/1). 52%. 20.0 mg. White solid; ¹H NMR (CDCl₃, 400 MHz) δ 8.92-8.93 (m, 1H), 8.02-8.04 (m, 1H), 7.62 (dd, $J_1 = 1.6$ Hz; $J_2 = 8.0$ Hz, 1H), 7.53 (s, 1H), 7.32-7.38 (m, 3H), 7.05-7.13 (m, 2H), 6.96 (t, J = 7.6 Hz, 1H), 6.82 (d, J = 8.0 Hz, 1H), 6.68 (t, J = 7.6 Hz, 1H), 2.26 (s, 3H), -0.11 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz) δ 163.3, 152.5, 150.7, 144.2, 142.2, 137.5, 136.1, 135.9, 130.3, 129.2, 128.4, 128.1, 127.6, 126.8, 126.6, 125.6, 121.4, 112.9, 17.1, 0.015. HRMS (EI-TOF) calcd for C₂₄H₂₄N₂OSi (M⁺): 384.1658, found: 384.1655.

3-methyl-4,6-diphenyl-1-(quinolin-8-yl)-5-(trimethylsilyl)pyridin-2(1H)-one (7j)

Rf 0.20 (hexane/EtOAc = 5/1). 52%. 23.9 mg. White solid; ¹H NMR (CDCl₃, 400 MHz) δ 9.00-9.01 (m, 1H), 8.06 (dd, $J_1 = 1.2$ Hz; $J_2 = 8.4$ Hz, 1H), 7.63 (dd, $J_1 = 4.0$ Hz; $J_2 = 5.6$ Hz, 1H), 7.37-7.47 (m, 5H), 7.32-7.33 (m, 3H), 7.20 (d, J = 8.0 Hz, 1H), 7.07 (t, J = 7.6 Hz, 1H), 6.95 (t, J = 7.2 Hz, 1H), 6.86 (d, J = 8.0 Hz, 1H), 6.62 (t, J = 7.6 Hz, 1H), 1.94 (s, 3H), -0.59 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz) δ 160.6, 153.2, 149.8, 148.4, 142.2, 139.1, 135.6, 134.6, 133.6, 128.6, 128.0, 127.6, 127.2, 126.5, 125.9, 125.6, 125.2, 124.4, 124.2, 123.3, 119.0, 111.6, 12.2, 0.014. HRMS (EI-TOF) calcd for C₃₀H₂₈N₂OSi (M⁺): 460.1971, found: 460.1971.

Gram-Scale Synthesis of 3a and 7a

A 25 mL sealed tube was charged with amide **1a** (1 mmol), alkynylsilanes **2a** (3 mmol), $Co(OAc)_2 \cdot 4H_2O$ (50 mg, 0.2 mmol), $Mn(OAc)_2$ (346 mg, 2 mmol), CsF (456 mg, 3 mmol) and CF₃CH₂OH (10 mL). The vial was evacuated and filled with O₂ atmosphere for five times, and stirred at 100 °C for 24 h. The mixture was then cooled to room temperature, diluted with EtOAc, filtered through a celite pad, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel, eluting with EtOAc/hexane (1:5 ~ 1:1, v/v), to afford the desired product **3a** (yield = 93%).

A 25 mL sealed tube was charged with amide **1a** (1 mmol), alkynylsilanes **2a** (3 mmol), Co(acac)₂ (52 mg, 0.2 mmol), Mn(acac)₃ (704 mg, 2 mmol), NaOAc (164 mg, 2 mmol) and CF₃CH₂OH (10 mL). The vial was evacuated and filled with O₂ atmosphere for five times, and stirred at 100 °C for 24 h. The mixture was then cooled to room temperature, diluted with EtOAc, filtered through a celite pad, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel, eluting with EtOAc/hexane (1:5 ~ 1:2, v/v), to afford the desired product **7a** (yield = 71%).

The H/D Exchange Experiments

A 25 mL sealed tube was charged with amide **1a** (0.1 mmol), D₂O (20 mg, 1 mmol), Co(OAc)₂·4H₂O (5 mg, 0.02 mmol), Mn(OAc)₂ (34.6 mg, 0.2 mmol), CsF (45.6 mg, 0.3 mmol) and CF₃CH₂OH (1.0 mL). The vial was evacuated and filled with O₂ atmosphere for five times, and stirred at 100 °C for 24 h. The mixture was then cooled to room temperature, diluted with EtOAc, filtered through a celite pad, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel, eluting with EtOAc/hexane (1:5, v/v), to afford the desired product **D-1a**.

The Kinetic Isotope Experiments

A 25 mL sealed tube was charged with amide **1a** (0.1 mmol), alkynylsilanes **2a** (0.3 mmol), $Co(OAc)_2 \cdot 4H_2O$ (5 mg, 0.02 mmol), $Mn(OAc)_2$ (34.6 mg, 0.2 mmol), CsF (45.6 mg, 0.3 mmol) and CF₃CH₂OH (1.0 mL). The vial was evacuated and filled with O₂ atmosphere for five times, and stirred at 100 °C for 5 h. The mixture was then cooled to room temperature, diluted with EtOAc, filtered through a celite pad, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel, eluting with EtOAc/hexane (1:5 ~ 1:1, v/v), to afford the desired product **3a** (yield = 14%).

A 25 mL sealed tube was charged with amide d_5 -1a (0.1 mmol), alkynylsilanes 2a (0.3 mmol), Co(OAc)₂·4H₂O (5 mg, 0.02 mmol), Mn(OAc)₂ (34.6 mg, 0.2 mmol), CsF (45.6 mg, 0.3 mmol) and CF₃CH₂OH (1.0 mL). The vial was evacuated and filled with O₂ atmosphere for five times, and stirred at 100 °C for 5 h. The mixture was then cooled to room temperature, diluted with EtOAc, filtered through a celite pad, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel, eluting with EtOAc/hexane (1:5 ~ 1:1, v/v), to afford the desired product d_4 -3a (yield = 11%).

*d*₅-1a

A 25 mL sealed tube was charged with amide **1a** (0.05 mmol), amide d_5 -**1a** (0.05 mmol), alkynylsilanes **2a** (0.3 mmol), Co(OAc)₂·4H₂O (5 mg, 0.02 mmol), Mn(OAc)₂ (34.6 mg, 0.2 mmol), CsF (45.6 mg, 0.3 mmol) and CF₃CH₂OH (1.0 mL). The vial was evacuated and filled with O₂ atmosphere for five times, and stirred at 100 °C for 5 h. The mixture was then cooled to room temperature, diluted with EtOAc, filtered through a celite pad, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel, eluting with EtOAc/hexane (1:5 ~ 1:1, v/v), to afford the desired product **3a** and d_4 -**3a** (yield = 23%).

*d*₄-3d

References

- 1. L. D.Tran, I. Popov and O. Daugulis, J. Am. Chem. Soc., 2012, 134, 18237.
- 2. L. Grigorjeva and O. Daugulis, Angew. Chem., Int. Ed., 2014, 53, 10209
- 3. Y. Ano, M. Tobisu and N. Chatani, Org. Lett., 2012, 14, 354.
- 4. X. Cong, Y. Li, Y. Wei and X. Zeng, Org. Lett., 2014, 16, 3926.

Copies of ¹H and ¹³C NMR Spectra

S33

S36

S58

3-(4-bromophenyl)-2-(quinolin-8-yl)-4-(trimethylsilyl)isoquinolin-1(2H)-one (7b)

3-(prop-1-en-2-yl)-2-(quinolin-8-yl)-4-(trimethylsilyl)isoquinolin-1(2H)-one (7e)

S68

S71

