Supporting Information

The role of cation and anion dopant incorporated in a ZnO electron transporting layer for polymer bulk heterojunction solar cells

Soyeon Kim,^a Jae Hoon Jeong,^a Quoc Viet Hoang,^b Joo Won Han,^c Yong Hyun Kim,^c Adi prasetio,^{a,c}, Muhammad Jahandar,^a Shinuk Cho^{d,*} and Dong Chan Lim^{a,*}

^aSurface Technology Division, Korea Institute of Materials Science (KIMS), 797 Changwondaero, Seongsangu, Changwon, Gyeongnam 51508, Republic of Korea.

^bVietnam-Korea Technological Innovation Center, Directorate for Standards, Metrology and Quality (STAMEQ), No.8 Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam

^cDepartment of Display Engineering, Pukyong National University, Busan 48513, Republic of Korea.

^dDepartment of Physics and EHSRC, University of Ulsan, Ulsan 44610, Republic of Korea.

Figure S1. Optical transmittance spectra of different interlayers on a glass substrate and a lone glass substrate

Figure S2. High-resolution XPS spectra of Zn 2p peaks of ZnO and doped ZnO layers on a silicon wafer

Figure S3. High-resolution XPS spectra of O 1s peaks of ZnO and doped ZnO layers on a silicon wafer

Figure S4. High-resolution XPS spectra of Al 2p peaks of doped ZnO thin films on a silicon wafer

Figure S5. High-resolution XPS spectra of C 1s peaks of ZnO and Al(acac)₃-doped ZnO thin films on a silicon wafer

Figure S6. High-resolution XPS spectra of N 1s peaks of ZnO and doped ZnO thin films on a silicon wafer

Figure S7. High-resolution XPS spectra of Cl 2p peaks of doped ZnO thin films on a silicon wafer

Figure S8: 3D AFM tapping-mode height images (5 μm x 5 μm) of a) ITO/ZnO; b)ITO/ZnO+ Al(acac)₃; c) ITO/ZnO+Al(NO₃)₃; d) ITO/ZnO+AlCl₃; e) ITO/ZnO+NH₄Cl; f) ITO/ZnO+MgCl₂

Figure S9. XRD of ZnO and doped ZnO thin films on a silicon wafer (annealing temperature: 180 °C)

Figure S10: UPS spectra of interlayer thin films (Au substrate as a standard, WF =5.2 eV).

Figure S11. Polymer structures and PC₇₁BM

Figure S12. J-V curves of P3HT:PC₇₁BM devices with different electron transporting layers.

Figure S13. J-V curves of PTB7:PC₇₁BM devices with different electron transporting layers.

Figure S14. J-V curves of PTB7-Th:PC71BM devices with different AlCl3 concentrations.

Figure S15. J-V curves of PTB7-Th:PC₇₁BM devices with different active layer thicknesses. In these devices, the ZnO layer was doped with AlCl₃.

Figure S16. Photocurrents of PTB7-Th:PC₇₁BM devices with different electron transporting layers.

Figure S17. J-V curves of ZnO and AlCl₃-doped ZnO devices with PEIE as a surface modification layer.

Figure S18. An organic solar module driven motion sensor device that includes an AlCl₃doped ZnO ETL. An OPV module integrated with a motion sensor and buzzer is attached to the inside office window.

Device	Rs (Ohm)	Rsh (Ohm)
ZnO	10.4	28780
ZnO+Al(acac) ₃	8.2	49990
ZnO+Al(NO ₃) ₃	6.2	29330
ZnO+AlCl ₃	3.9	9080
ZnO+NH ₄ Cl	6.7	14510
ZnO+MgCl ₂	6.5	10360

Table S1. Series resistances and shunt resistances are extracted from EIS fitting of PTB7-Th: $PC_{71}BM$ devices with different ETLs.

Table S2. Photovoltaic performances of P3HT:PC₇₁BM devices with different electron transporting layers.

Device	PCE best (%)	F.F	Voc (V)	$Jsc (mA/Cm^2)$
Reference	3.84 (3.54) ^a	0.589	0.609	10.68
ZnO+Al(acac) ₃	4.00 (3.71)	0.602	0.610	10.87
ZnO+Al(NO ₃) ₃	4.07 (3.85)	0.614	0.617	10.74
ZnO+AlCl ₃	4.23 (4.02)	0.619	0.617	11.23
ZnO+NH ₄ Cl	3.97 (3.71)	0.604	0.615	10.67
ZnO+MgCl ₂	4.02 (3.81)	0.604	0.612	10.86

^a The average PCE from more than 8 devices.

Device	PCE best (%)	F.F	Voc (V)	Jsc (mA/Cm ²)
Reference	8.19 (7.78) ^a	0.729	0.742	15.13
ZnO+Al(acac) ₃	8.74 (8.49)	0.731	0.741	16.11
ZnO+Al(NO ₃) ₃	8.79 (8.58)	0.733	0.744	16.08
ZnO+AlCl ₃	9.01(8.85)	0.735	0.748	16.39
ZnO+NH ₄ Cl	8.68 (8.48)	0.735	0.745	15.82
ZnO+MgCl ₂	8.82 (8.57)	0.735	0.746	16.07

Table S3. Photovoltaic performances of PTB7:PC₇₁BM devices with different electron transporting layers.

^a The average PCE from more than 8 devices.

Table S4. Photovoltaic performances of devices with different AlCl₃ concentrations in AlCl₃-doped ZnO.

Device	PCE (%)	F.F	Voc (V)	Jsc (mA/Cm ²)
Reference	9.16	0.68	0.79	17.10
0.5M ZnO+ 1.3 mM AlCl3	9.56	0.69	0.80	17.45
0.5M ZnO+ 2.5 mM AlCl3	10.16	0.71	0.80	18.00
0.5M ZnO+ 5.2 mM AlCl3	9.95	0.70	0.80	17.86
0.5M ZnO+ 7.3 mM AlCl3	9.72	0.70	0.79	17.42

Device	PCE best (%)	F.F	Voc (V)	Jsc (mA/cm ²)	Ref.
ZnO	7.48	0.58	0.74	15.66	[1]
ZnO/PEI	9.67	0.68	0.79	16.52	
ZnO	8.81	0.63	0.79	17.23	[2]
ZnO/PEOz	9.57	0.68	0.80	18.10	
ZnO	9.50	0.67	0.78	17.50	[3]
ZnO/PFS-FTEG	10.60	0.72	0.80	18.30	
ZnO/PFS-FC	10.10	0.69	0.80	18.00	
TiO ₂	9.49	0.69	0.79	17.25	[4]
PEI	9.62	0.67	0.77	18.57	
PFN-OX	9.44	0.66	0.78	18.11	
TiO ₂ /PEI	10.06	0.71	0.81	17.20	
PEI/TiO ₂	10.30	0.71	0.81	17.64	
ZnO	9.16	0.67	0.79	17.10	This work
ZnO+AlCl ₃	10.38	0.71	0.80	18.01	
ZnO/PEIE	10.14	0.70	0.80	17.94	
ZnO+AlCl ₃ /PEIE	10.48	0.71	0.80	18.03	

Table S5. Photovoltaic performances of state of the art organic solar cells with various ETL having PTB7-Th:PC₇₀BM active layer.

Reference:

[1] C. Wang, C. Li, R. C. I. Mackenzie, S. Wen, Y. Liu, P. Ma, G. Wang, W. Tian and S. Ruan, *J. Mater. Chem. A*, 2018, 6, 17662–17670.

[2] S. Nam, J. Seo, S. Woo, W. H. Kim, H. Kim, D. D. C. Bradley and Y. Kim, *Nat. Commun.*, 2015, 6, 8929.

[3] J. Subbiah, V. D. Mitchell, N. K. C. Hui, D. J. Jones and W. W. H. Wong, *Angew. Chem. Int. Ed.*, 2017, 56, 8431–8434.

[4] Y. Yan, F. Cai, L. Yang, W. Li, Y. Gong, J. Cai, S. Liu, R. S. Gurney, D. Liu and T. Wang, ACS Appl. Mater. Interfaces, 2017, 9, 32678–32687.