Supporting information

Uniform Gallium Oxyhydroxide Nanorods Anodes with Superior Lithium-Ion Storage

Jingjing Feng, ^a Bowen Fu, ^b Liang Fang, ^a Fang Wang, ^b Xin Zhang, ^b Yongtao Li, ^{a*}

Yun Song ^{b*}

^a School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243032, China

^b Department of Materials Science, Fudan University, Shanghai 200433, P. R. China

*Corresponding E-mail: songyun@fudan.edu.cn, toni-li@163.com

The theoretical capacity of 1304 mAh/g for GaOOH is calculated via the following process:

$$C_0 = 1000 \, nF/3600M \tag{1}$$

 C_0 is the theoretical specific capacity; F is Faraday constant (1F=96500 C/mol); M is molecular weight of matter and $M_{(GaOOH)}=102.72$; n is number of electrons in the flow-through reaction, and it is calculated as n=5 according to the following redox reactions between GaOOH and lithium ions:

$$GaOOH + 3Li^{+} + 3e^{-} \rightarrow Ga + Li_2O + LiOH$$
(2)

$$Ga + \frac{2}{7}Li^{+} + \frac{2}{7}e^{-} \rightarrow \frac{1}{7}Ga_{7}Li_{2}$$
 (3)

$$\frac{1}{7}Ga_7Li_2 + \frac{5}{7}Li^+ + \frac{5}{7}e^- \to GaLi$$
(4)

$$GaLi + Li^{+} + e^{-} \rightarrow GaLi_2 \tag{5}$$

Substituting the above values into the formula(1): _

....

$$C_{0(GaOOH)} = \frac{1000 * 5 * 96500}{3600 * 102.72} \approx 1304 \ (mAh/g)$$

Fig. S1 Ga 2p XPS spectrum of GaOOH nanorods.

Fig. S2 (a) N_2 adsorption-desorption isotherms and (b) pore size distribution curve of GaOOH nanorods.

Fig. S3 Plots of dQ/dV vs. potential for GaOOH nanorods.

Fig. S4 TEM images of the morphology of the products after 1st, 9th and 100th cycles.

Fig. S5 CV curves with the pseudocapacitive contribution shown by the red region at a scan rate of (a) $0.1 \text{ mV} \cdot \text{s}^{-1}$, (b) $0.3 \text{ mV} \cdot \text{s}^{-1}$, (c) $0.5 \text{ mV} \cdot \text{s}^{-1}$, (d) $0.8 \text{ mV} \cdot \text{s}^{-1}$ and (e) $2 \text{ mV} \cdot \text{s}^{-1}$.

Fig.S6 (a) CV curves at scan rates from 0.1 to 1.0 mV \cdot s⁻¹ of GaOOH-super p; (b) corresponding logi vs. logv plots at each redox peak of GaOOH-super p.

Fig.S7 CV curves with the pseudocapacitive contribution for GaOOH-super p shown by the red region at a scan rate of (a) $0.1 \text{ mV} \cdot \text{s}^{-1}$, (b) $0.3 \text{ mV} \cdot \text{s}^{-1}$, (c) $0.5 \text{ mV} \cdot \text{s}^{-1}$, (d) $0.8 \text{ mV} \cdot \text{s}^{-1}$, (e) $1 \text{ mV} \cdot \text{s}^{-1}$ and (f) $2 \text{ mV} \cdot \text{s}^{-1}$.

Fig.S8 Normalized contribution ratio of GaOOH-super p at different scan rates.

Fig.S9 Rate performance of GaOOH-super p.

Anode materials	Current desity (mA g ⁻¹)	Cycling capacity (mAh g ⁻¹)	Cycle number	Ref
GaN NSs	1000	600	1000	1
a-GaN@Cu	10000	509	3000	2
GaSe	100	760	50	3
NiGa ₂ O ₄ /rGO	2000	669.8	1000	4
ALD GaS_x (x = 1.2)	120	766	100	5
Ga_2S_3	100	600	10	6
ZnGa ₂ O ₄	100	679	50	7
$Ga_2O_3@C@G$	100	458	50	8
Ga ₂ O ₃ NSs/rGO	100	834	200	9
Ga ₂ O ₃ -10% rGO	50	770	40	10
Ga ₂ O3@C NPs	500	720	200	11
GaOOH nanorods	500	1089	300	This work

Table. S1 Comparison of the characteristic parameters of different Ga-based materials for LIBs applications.

References:

- [1] C. Sun, M. Yang, T. Wang, Y. Shao, Y. Wu, X. Hao, ACS Appl. Mater. Interfaces, 2017, 9, 26631-26636.
- [2] S. Ni, P. Huang, D. Chao, Gu. Yuan, L. Zhang, F. Zhao, J. Li, Adv. Funt. Mater. 2017, 27, 1701808.
- [3] J. H. Jeong, D. W. Jung, E.S. Oh, JALLOY COMPD, 2104, 613, 42-45.
- [4] Y. Huang, J. Ouyang, X. Tang, Y. Yang, J. Qian, J. Lu, L. Xiao, L. Zhuang, ACS Appl. Mater. Interfaces, 2019, 11, 8025-8031
- [5] X. Meng, K. He, D. Su, X. Zhang, C. Sun, Y. Ren, H. H. Wang, W. Weng, L. Trahey, C. P. Canlas, J. W. Elam, *Adv. Funt. Mater.*, 2014, 24, 5435-5442.
- [6] H. Senoha, H. Kageyama, T. Takeuchi, K. Nakanishi, T. Ohta, H. Sakaebe, M. Yao, T. Sakai, K. Yasuda, J. Power Sources., 2011, 196, 5631-5636.
- [7] N. Han, D. Chen, Y. Pang, Z. Han, Y. Xia, X. Jiao, *Electrochimica Acta*, 2017, 235, 295-303.
- [8] S. Ni, Q. Chen, J. Liu, S. Yang, T. Li, X.Yang, J. Zhao, New Insights into the Listorage Mechanism in α-Ga₂O₃ Anode and the Otimized Electrode Design, J. *Power Sources*, 433 (2019) 126681.
- [9] M. Yang, C. Sun, T. Wang, F. Chen, M. Sun, L. Zhang, Y. Shao, Y. Wu, X. Hao, ACS Appl. Energy Mater., 2018, 19, 4708-4715.
- [10] S. B. Patil, I. Y. Kim, J. L. Gunjakar, S. M. Oh, T. Eom, H. Kim, S. J. Hwang, ACS Appl. Mater. Interfaces, 2015, 7, 18679-18688.
- [11] X. Tang, X. Huang, Y. Huang, Y. Gou, J. Pastore, Y. Yang, Y. Xiong, J. Qian, J. D. Brock, J. Lu, L.Xiao, H. D. Abruna, L. Zhuang, *ACS Appl. Mater. Interfaces*, 2018, 10, 5519-5526.