Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2019

# **Supporting Information**

# Efficient Synthesis of Spirooxindolyl Oxazol-2(5H)-ones via

# Palladium(II)-Catalyzed Addition of Arylboronic Acids to Nitriles

Hao Song, Na Cheng, Li-Qin She and Wei-Wei Liao\*

Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China. E-mail: <u>wliao@jlu.edu.cn</u>

**Table of Contents** 

- I. General Information
- **II. Reaction Condition Screening**
- **III. Preparation of Substrates**
- IV. General Procedure and Experimental Details of Pd-Catalyzed Addition
- /Cyzlization Sequences
- V. Synthetic Transformation
- **VI. References**
- VII. Crystal Data and Structure Refinement
- VIII. <sup>1</sup>H and <sup>13</sup>C NMR Spectral Copies

## I. General Information

All reactions were carried out under inert atmospheric condition unless otherwise noted, and solvents were dried according to established procedures. Reactions were monitored by thin layer chromatography (TLC) visualizing with ultraviolet light (UV), KMnO<sub>4</sub>, p-anisaldehyde stain, and phosphomolybdic acid (PMA) stain; column chromatography purifications were carried out using silica gel. Proton nuclear magnetic resonance (<sup>1</sup>H NMR) spectra were recorded on a 300 or 500 MHz spectrometer in CDCl<sub>3</sub>, and carbon nuclear magnetic resonance (<sup>13</sup>C NMR) spectra were recorded on 125 MHz spectrometer in CDCl<sub>3</sub> unless otherwise noted. Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane (TMS) and are referenced to residual protium in the NMR solvent (CHCl<sub>3</sub> =  $\delta$  7.26 ppm). Chemical shifts for carbon are reported in parts per million downfield from tetramethylsilane (TMS) and are referenced to the carbon resonances of the solvent residual peak (CDCl<sub>3</sub> =  $\delta$  77.16 ppm). NMR data are presented as follows: chemical shift ( $\delta$  ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constant in Hertz (Hz), integration. Mass spectra were recorded on the Bruker MicrOTOF Q II.

# II. Reaction Condition Screening Table S1. Optimized reaction conditions of Pd (II) complex catalyzed reaction <sup>a</sup>

|                 | NC O                 | OEt<br>0 + | PhB(OH) <sub>2</sub> [<br>solv | $\frac{PdJ/Ligand}{rent, additive, T} \qquad $ | n<br>+ (     | H <sub>2</sub> N O                  | CO₂Et<br>O                          |
|-----------------|----------------------|------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------------|-------------------------------------|
|                 | Ме<br><b>1а</b>      |            | 2a                             | 3a                                                                                                                                                                    |              | 4a                                  |                                     |
| Entry           | Cat.                 | Ligand     | Solvent                        | Additive                                                                                                                                                              | <i>t</i> (h) | Yield<br><b>3a</b> (%) <sup>b</sup> | Yield<br><b>4b</b> (%) <sup>b</sup> |
| 1               | $Pd(OAc)_2$          | L1         | THF                            | AcOH (10 eq.)                                                                                                                                                         | 24           | 77                                  | 8                                   |
| 2               | $Pd(OAc)_2$          | L1         | THF                            | $Cs_2CO_3(0.2 \text{ eq.})$                                                                                                                                           | 24           | 58                                  | nd                                  |
| 3               | $Pd(OAc)_2$          | L1         | THF                            | CSA (10 eq.)                                                                                                                                                          | 24           | 24                                  | 17                                  |
| 4               | $Pd(OAc)_2$          | L1         | THF                            | TsOH (10 eq.)                                                                                                                                                         | 24           | 32                                  | 24                                  |
| 5               | $Pd(OAc)_2$          | L1         | THF                            | MsOH (10 eq.)                                                                                                                                                         | 24           | 26                                  | 20                                  |
| 6               | $Pd(OAc)_2$          | L1         | 1,4-dioxane                    | AcOH (10 eq.)                                                                                                                                                         | 24           | 55                                  | 24                                  |
| 7               | $Pd(OAc)_2$          | L1         | CH <sub>3</sub> CN             | AcOH (10 eq.)                                                                                                                                                         | 24           | 40                                  | 23                                  |
| 8               | $Pd(OAc)_2$          | L1         | DCE                            | AcOH (10 eq.)                                                                                                                                                         | 24           | 48                                  | 13                                  |
| 9               | $Pd(OAc)_2$          | L1         | Toluene                        | AcOH (10 eq.)                                                                                                                                                         | 24           | 27                                  | 32                                  |
| 10              | $Pd(OAc)_2$          | L1         | МеОН                           | AcOH (10 eq.)                                                                                                                                                         | 24           | 49                                  | 17                                  |
| 11              | $Pd(OAc)_2$          | L1         | NMA                            | AcOH (10 eq.)                                                                                                                                                         | 24           | 47                                  | 30                                  |
| 12              | Pd(OAc)2             | L1         | DMF                            | AcOH (10 eq.)                                                                                                                                                         | 24           | 79                                  | nd                                  |
| 13              | $Pd(OAc)_2$          | L1         | DMA                            | AcOH (10 eq.)                                                                                                                                                         | 24           | 78                                  | nd                                  |
| 14              | $Pd(OAc)_2$          | L1         | DMSO                           | AcOH (10 eq.)                                                                                                                                                         | 24           | 71                                  | nd                                  |
| 15              | Pd(OAc) <sub>2</sub> | L1         | NMP                            | AcOH (10 eq.)                                                                                                                                                         | 24           | 82                                  | nd                                  |
| 16              | Pd(TFA) <sub>2</sub> | L1         | NMP                            | AcOH (10 eq.)                                                                                                                                                         | 24           | 77                                  | nd                                  |
| 17              | $Pd(acac)_2$         | L1         | NMP                            | AcOH (10 eq.)                                                                                                                                                         | 24           | 88                                  | nd                                  |
| 18              | $Pd(acac)_2$         | L2         | NMP                            | AcOH (10 eq.)                                                                                                                                                         | 24           | 86                                  | nd                                  |
| 19              | $Pd(acac)_2$         | L3         | NMP                            | AcOH (10 eq.)                                                                                                                                                         | 24           | 73                                  | nd                                  |
| 20              | $Pd(acac)_2$         | L4         | NMP                            | AcOH (10 eq.)                                                                                                                                                         | 24           | 88                                  | nd                                  |
| 21              | $Pd(acac)_2$         | L1         | NMP                            | AcOH (10 eq.)                                                                                                                                                         | 24           | 70                                  | nd                                  |
| 22              | $Pd(acac)_2$         | L1         | NMP                            | AcOH (10 eq.)/KF (2 eq.)                                                                                                                                              | 24           | 45                                  | nd                                  |
| 23              | $Pd(acac)_2$         | L1         | NMP                            | AcOH (10 eq.)/CsF (2 eq.)                                                                                                                                             | 24           | 34                                  | nd                                  |
| 24              | $Pd(acac)_2$         | L1         | NMP                            | AcOH (5 eq.)                                                                                                                                                          | 24           | 87                                  | nd                                  |
| 25              | $Pd(acac)_2$         | L1         | NMP                            | AcOH (5 eq.)                                                                                                                                                          | 30           | 91                                  | nd                                  |
| 26              | $Pd(OAc)_2$          | L1         | NMP                            | AcOH (5 eq.)                                                                                                                                                          | 36           | 92                                  | nd                                  |
| 27 <sup>c</sup> | Pd(OAc) <sub>2</sub> | L1         | NMP                            | AcOH (5 eq.)                                                                                                                                                          | 36           | 91                                  | nd                                  |
| 28 <sup>c</sup> | Pd(OAc) <sub>2</sub> | L1         | NMP                            | -                                                                                                                                                                     | 36           | 83                                  | nd                                  |
| 29              | -                    | L1         | NMP                            | -                                                                                                                                                                     | 24           | nd                                  | nd                                  |

| 30                | $Pd(OAc)_2$ | -  | NMP | -            | 24 | nd | nd |
|-------------------|-------------|----|-----|--------------|----|----|----|
| 31                | -           | -  | NMP | AcOH (5 eq.) | 24 | nd | nd |
| 32                | $Pd(OAc)_2$ | L1 | NMP | AcOH (5 eq.) | 36 | 79 | nd |
| 33 <sup>c,d</sup> | $Pd(OAc)_2$ | L1 | NMP | AcOH (5 eq.) | 35 | 76 | nd |

<sup>*a*</sup> Reaction conditions: **1a** (0.2 mmol), **2a** (0.6 mmol), catalyst (10 mol %), ligand (12 mol %) and HOAc (10 equiv.) in solvent (1 mL) at 80 °C. <sup>*b*</sup> Isolated yield. <sup>*c*</sup> Pd(OAc)<sub>2</sub> (5 mol %) and bpy (6 mol %) were used. <sup>*d*</sup> Run at 100 °C.

L1: 2,2'-Bipyridine; L2: 4,4'-Dimethyl-2,2'-Bipyridine; L3: 5,5'-Dimethyl-2,2'-Bipyridine; L4: 1,10-Phenanthroline

Table SI-2. Optimized reaction conditions of Ni (II) complex catalyzed reaction <sup>a</sup>

|                | NC O OEt +                                         | PhB(OH) <sub>2</sub> | [Ni] / L<br>Solvent, A | igand > (<br>dditive, <i>T</i>  |              | Ph<br>D              |
|----------------|----------------------------------------------------|----------------------|------------------------|---------------------------------|--------------|----------------------|
|                | Ме<br><b>1а</b>                                    | 2a                   |                        |                                 | 3            | Me<br>Ba             |
| Entry          | Cat.                                               | Ligand               | Solvent                | Additive                        | <i>t</i> (h) | Yield (%)            |
| 1              | Ni(acac) <sub>2</sub>                              | L1                   | Toluen<br>e            | Cs <sub>2</sub> CO <sub>3</sub> | 12           | 45                   |
| 2 <sup>c</sup> | Ni(acac) <sub>2</sub>                              | L1                   | Toluen<br>e            | HOAc                            | 12           | < 1                  |
| 3              | Ni(acac) <sub>2</sub>                              | L1                   | THF                    | $Cs_2CO_3$                      | 12           | 15                   |
| 4              | Ni(acac) <sub>2</sub>                              | L1                   | DMF                    | $Cs_2CO_3$                      | 12           | 26                   |
| 5              | Ni(acac) <sub>2</sub>                              | L1                   | DMSO                   | $Cs_2CO_3$                      | 12           | 28                   |
| 6              | Ni(acac) <sub>2</sub>                              | L1                   | DME                    | $Cs_2CO_3$                      | 12           | 15                   |
| 7              | Ni(acac) <sub>2</sub>                              | L1                   | NMP                    | $Cs_2CO_3$                      | 12           | 27                   |
| 8              | Ni(acac) <sub>2</sub>                              | L1                   | MTBE                   | $Cs_2CO_3$                      | 12           | 56                   |
| 9              | Ni(dppe)Cl <sub>2</sub>                            | none                 | MTBE                   | $Cs_2CO_3$                      | 12           | 38                   |
| 10             | Ni(PPh <sub>3</sub> ) <sub>2</sub> Cl <sub>2</sub> | none                 | MTBE                   | $Cs_2CO_3$                      | 12           | 25                   |
| 11             | $Ni(OAc)_2 \cdot 4H_2O$                            | L1                   | MTBE                   | $Cs_2CO_3$                      | 12           | 33                   |
| 12             | $NiCl_2 \cdot 6H_2O$                               | L1                   | MTBE                   | $Cs_2CO_3$                      | 12           | 17                   |
| 13             | NiCl <sub>2</sub> (DME)                            | L1                   | MTBE                   | Cs <sub>2</sub> CO <sub>3</sub> | 12           | 15                   |
| 14             | Ni(ClO <sub>4</sub> ) <sub>2</sub>                 | L1                   | MTBE                   | Cs <sub>2</sub> CO <sub>3</sub> | 12           | 51                   |
| 15             | Ni(acac) <sub>2</sub>                              | -                    | MTBE                   | Cs <sub>2</sub> CO <sub>3</sub> | 12           | 30                   |
| 16             | Ni(acac) <sub>2</sub>                              | L2                   | MTBE                   | Cs <sub>2</sub> CO <sub>3</sub> | 12           | 67 (66) <sup>d</sup> |
| 17             | Ni(acac) <sub>2</sub>                              | L3                   | MTBE                   | Cs <sub>2</sub> CO <sub>3</sub> | 12           | 50                   |
| 18             | Ni(acac) <sub>2</sub>                              | L4                   | MTBE                   | Cs <sub>2</sub> CO <sub>3</sub> | 12           | 60                   |
| 19 e           | NiCl <sub>2</sub> ·6H <sub>2</sub> O               | L2                   | MTBE                   | Cs <sub>2</sub> CO <sub>3</sub> | 12           | 53                   |
| 20             | Ni(acac) <sub>2</sub>                              | L2                   | MTBE                   | Na <sub>2</sub> CO <sub>3</sub> | 12           | 28                   |
| 21             | Ni(acac) <sub>2</sub>                              | L2                   | MTBE                   | K <sub>2</sub> CO <sub>3</sub>  | 12           | 59                   |

| 22                     | $Ni(acac)_2$          | L2 | MTBE | CsF        | 12 | 34 |
|------------------------|-----------------------|----|------|------------|----|----|
| 23 <sup><i>f</i></sup> | Ni(acac) <sub>2</sub> | L2 | MTBE | $Cs_2CO_3$ | 12 | 45 |
| 24 <sup>g</sup>        | Ni(acac) <sub>2</sub> | L2 | MTBE | $Cs_2CO_3$ | 12 | 35 |

<sup>*a*</sup> Reaction conditions: **1a** (0.2 mmol), **2a** (0.6 mmol), Ni (II) catalyst (10 mol %), ligand (12 mol %) and Cs<sub>2</sub>CO<sub>3</sub> (0.2 equiv.) in solvent (C = 0.25 *M*) at 110 °C for 12 h. <sup>*b*</sup> Isolated yield. <sup>*c*</sup> HOAc (10 equiv.) instead of Cs<sub>2</sub>CO<sub>3</sub> (0.2 equiv.). <sup>*d*</sup> Yield in parenthesis for 24 h. <sup>*e*</sup> AgOTf (0.2 eq.) was added. <sup>*f*</sup> Run at 120 °C. <sup>*g*</sup> Run at 130 °C.

L1: 2,2'-Bipyridine; L2: 4,4'-Dimethyl-2,2'-Bipyridine; L3: 5,5'-Dimethyl-2,2'-Bipyridine; L4: 1,10-Phenanthroline

## III. Preparation of Substrates



Compound 2a-2p were prepared according to the known procedure.<sup>1-3</sup>

To a solution of isatin derivative S1 (1.0 mmol) in CH<sub>3</sub>CN (2.0 mL) was added Et<sub>3</sub>N(0.3 mmol) and ethyl cyanoformate (1.2 mmol), and the mixture was stirred at room temperature overnight. Upon completion, the reaction mixture was then concentrated under reduced pressure and the crude mixture was purified by flash column chromatography on silica gel with ethyl acetate/petroleum ether (60-90°C) to afford the cyano-ethoxycarbonylation product 1. Compounds **4a-4d** were prepared according to the similar procedure.

### 3-cyano-1-methyl-2-oxoindolin-3-yl ethyl carbonate



Yellow solid. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.65 (dd, *J* = 8.2 Hz, 1H), 7.52-7.47 (m, 1H), 7.20-7.16 (m, 1H), 6.92 (d, *J* = 7.9 Hz, 1H), 4.24-4.15 (m, 2H), 3.28 (s, 3H), 1.29 (t, *J* = 7.1 Hz, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 165.90, 151.75, 144.37, 132.98, 125.95, 124.31, 121.73, 113.08, 109.65, 71.24, 66.09, 27.37, 14.12.

#### 3-cyano-2-oxo-1-phenylindolin-3-yl ethyl carbonate



Yellow solid, mp: 110.3-110.9 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.68 (d, *J* = 7.5 Hz, 1H), 7.59-7.53 (m, 2H), 7.51-7.38 (m, 4H), 7.23-7.18 (m, 1H), 6.81 (d, *J* = 7.9 Hz, 1H), 4.31-4.11 (m, 2H), 1.31 (t, *J* = 7.3 Hz, 3H).<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  165.47, 151.75, 144.90, 133.32, 132.85, 130.12,

129.31, 126.70, 125.80, 124.67, 121.41, 113.12, 110.93, 71.51, 66.18, 14.15. HRMS (ESI): calcd. for  $C_{18}H_{15}N_2O_4^+([M+H]^+)$ : 323.1026, found 323.1027.

# 1-benzyl-3-cyano-2-oxoindolin-3-yl ethyl carbonate



Yellow solid. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.64 (d, *J* = 7.4 Hz, 1H), 7.38-7.27 (m, 6H), 7.15-7.11 (m, 1H), 6.75 (d, *J* = 7.9 Hz, 1H), 5.01 (d, *J* = 15.8 Hz, 1H), 4.90 (d, *J* = 15.8 Hz, 1H), 4.27-4.14 (m, 2H), 1.31 (t, *J* = 7.1 Hz, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 166.15, 151.69, 143.41, 134.23, 132.78, 129.15, 128.24, 127.38, 125.83, 124.32, 121.74, 113.15, 110.79, 71.42, 66.16, 45.05, 14.13.

3-cyano-1-(4-methoxybenzyl)-2-oxoindolin-3-yl ethyl carbonate



Yellow solid. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.62 (d, *J* = 7.5 Hz, 1H), 7.36-7.32 (m, 1H), 7.28 (d, *J* = 8.7 Hz, 2H), 7.14-7.10 (m, 1H), 6.89-6.86 (m, 2H), 6.77 (d, *J* = 7.9 Hz, 1H), 4.96 (d, J = 15.6 Hz, 1H), 4.82 (d, J = 15.6 Hz, 1H), 4.27-4.17 (m, 2H), 3.78 (s, 3H), 1.30 (t, *J* = 7.1 Hz, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  166.07, 159.55, 151.69, 143.44, 132.75, 128.86, 126.18, 125.80, 124.24, 121.76, 114.51, 113.17, 110.83, 71.44, 66.13, 55.39, 44.56, 14.13.

3-cyano-1-(4-nitrobenzyl)-2-oxoindolin-3-yl ethyl carbonate



Yellow solid. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.22 (d, J = 8.7 Hz, 2H), 7.64 (d, J = 7.5 Hz, 1H), 7.55 (d, J = 8.7 Hz, 2H), 7.38 (t, J = 7.8 Hz, 1H), 7.19 (t, J = 7.6 Hz, 1H), 6.67 (d, J = 7.9 Hz, 1H), 5.26 (d, J = 16.5 Hz, 1H), 4.88 (d, J = 16.5 Hz, 1H), 4.28-4.17 (m, 2H), 1.32 (t, J = 7.1 Hz, 3H).<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  166.16, 151.46, 147.83, 142.56, 141.46, 132.78, 128.12, 125.66, 124.71, 124.27, 121.56, 112.78, 110.21, 71.28, 66.26, 44.20, 14.02.

# 4-chloro-3-cyano-1-methyl-2-oxoindolin-3-yl ethyl carbonate



Yellow solid, mp: 97.3-97.9 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.44 (t, *J* = 8.1 Hz, 1H), 7.13 (d, *J* = 8.3 Hz, 1H), 6.84 (d, *J* = 7.9 Hz, 1H), 4.23-4.10 (m, 2H), 3.29 (s, 3H), 1.29 (t, *J* = 7.1 Hz, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  165.64, 151.25, 145.93, 133.89, 132.26, 124.82, 118.62, 111.58, 108.02, 71.09, 66.23, 27.67, 14.08. HRMS (ESI): calcd. for C<sub>13</sub>H<sub>12</sub>ClN<sub>2</sub>O<sub>4</sub><sup>+</sup> ([M+H]<sup>+</sup>): 295.0480, found 295.0481.

#### 5-chloro-3-cyano-1-methyl-2-oxoindolin-3-yl ethyl carbonate



Yellow solid, mp: 98.3-99.1 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.64 (d, *J* = 2.1 Hz, 1H), 7.47 (dd, *J* = 8.4, 2.1 Hz, 1H), 6.86 (d, *J* = 8.4 Hz, 1H), 4.25-4.18 (m, 2H), 3.28 (s, 3H), 1.31 (t, *J* = 7.1 Hz, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 165.48, 151.71, 142.88, 132.92, 129.76, 126.39, 123.04, 112.55, 110.72, 70.74, 66.38, 27.53, 14.12. HRMS (ESI): calcd. for  $C_{13}H_{12}ClN_2O_4^+$  ([M+H]<sup>+</sup>): 295.0480, found 295.0476.

6-chloro-3-cyano-1-methyl-2-oxoindolin-3-yl ethyl carbonate



Yellow solid, mp: 97.1-97.6 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.58 (d, J = 8.1 Hz, 1H), 7.18-7.15 (m, 1H), 6.93 (d, J = 1.8 Hz, 1H), 4.25-4.15 (m, 2H), 3.27 (s, 3H), 1.30 (t, J = 7.1 Hz, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  165.81, 151.73, 145.56, 139.20, 126.99, 124.25, 119.96, 112.64, 110.54, 70.61, 66.27, 27.50, 14.10. HRMS (ESI): calcd. for C<sub>13</sub>H<sub>11</sub>ClN<sub>2</sub>NaO<sub>4</sub><sup>+</sup> ([M+Na]<sup>+</sup>): 317.0300, found 317.0305.

#### 7-chloro-3-cyano-1-methyl-2-oxoindolin-3-yl ethyl carbonate



Yellow solid, mp: 96.0-96.7 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.55-7.51 (m, 1H), 7.44-7.39 (m, 1H), 7.10 (t, *J* = 7.9 Hz, 1H), 4.24-4.15 (m, 2H), 3.65 (s, 3H), 1.30 (t, *J* = 7.1 Hz, 3H).<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  166.16, 151.41, 140.21, 135.08, 124.91, 124.10, 124.02, 116.99, 112.48, 70.57, 66.17, 30.83, 13.98. HRMS (ESI): calcd. for C<sub>13</sub>H<sub>12</sub>ClN<sub>2</sub>O<sub>4</sub><sup>+</sup> ([M+H]<sup>+</sup>): 295.0480, found 295.0478.

# 3-cyano-1-methyl-5-nitro-2-oxoindolin-3-yl ethyl carbonate



Yellow solid, mp: 117.3-118.0 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 8.53 (d, *J* = 2.2 Hz, 1H), 8.46 (dd, *J* = 8.7, 2.2 Hz, 1H), 7.06 (d, *J* = 8.7 Hz, 1H), 4.27-4.17 (m, 2H), 3.37 (s, 3H), 1.32 (t, *J* = 7.1 Hz,

3H).<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 165.97, 151.61, 149.51, 144.37, 129.50, 122.35, 121.77, 111.92, 109.67, 70.07, 66.75, 27.91, 14.06. HRMS (ESI): calcd. for C<sub>13</sub>H<sub>12</sub>N<sub>3</sub>O<sub>6</sub><sup>+</sup> ([M+H]<sup>+</sup>): 306.0721, found 306.0718.

5-bromo-3-cyano-1-methyl-2-oxoindolin-3-yl ethyl carbonate



Yellow solid. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.58 (d, *J* = 8.1 Hz, 1H), 7.18-7.15 (m, 1H), 6.93 (d, *J* = 1.8 Hz, 1H), 4.25-4.15 (m, 2H), 3.27 (s, 3H), 1.30 (t, *J* = 7.1 Hz, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 165.37, 151.68, 143.36, 135.82, 129.06, 123.32, 116.72, 112.55, 111.15, 70.63, 66.38, 27.50, 14.10.

3-cyano-5-iodo-1-methyl-2-oxoindolin-3-yl ethyl carbonate



Yellow solid, mp: 115.9-116.7 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.92 (d, *J* = 1.7 Hz, 1H), 7.81 (dd, *J* = 8.3, 1.8 Hz, 1H), 6.70 (d, *J* = 8.3 Hz, 1H), 4.26-4.17 (m, 2H), 3.26 (s, 3H), 1.32 (t, *J* = 7.1 Hz, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  165.25, 151.67, 144.03, 141.74, 134.46, 123.59, 112.61, 111.62, 86.24, 70.49, 66.38, 27.46, 14.12. HRMS (ESI): calcd. for C<sub>13</sub>H<sub>12</sub>IN<sub>2</sub>O<sub>4</sub><sup>+</sup> ([M+H]<sup>+</sup>): 386.9836, found 386.9832.

# 3-cyano-1,5-dimethyl-2-oxoindolin-3-yl ethyl carbonate



Yellow solid, mp: 104.5-105.2 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.46 (s, 1H), 7.28 (d, J = 8.0 Hz, 1H), 6.80 (d, J = 7.9 Hz, 1H), 4.25-4.15 (m, 2H), 3.26 (s, 3H), 2.37 (s, 3H), 1.30 (t, J = 7.1 Hz, SI-10

3H).<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 165.85, 151.76, 141.92, 134.26, 133.27, 126.53, 121.65, 113.24, 109.46, 71.41, 66.03, 27.37, 21.13, 14.13. HRMS (ESI): calcd. for C<sub>14</sub>H<sub>15</sub>N<sub>2</sub>O<sub>3</sub><sup>+</sup>([M+H]<sup>+</sup>): 275.1026, found 275.1025.

3-cyano-5-methoxy-1-methyl-2-oxoindolin-3-yl ethyl carbonate



Yellow solid, mp: 109.2-109.8 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.25 (d, *J* = 2.6 Hz, 1H), 7.02-6.99 (m, 1H), 6.84 (d, *J* = 8.6 Hz, 1H), 4.24-4.17 (m, 2H), 3.82 (s, 3H), 3.25 (s, 3H), 1.30 (t, *J* = 7.1 Hz, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  165.60, 156.98, 151.71, 137.50, 122.55, 117.68, 113.09, 112.57, 110.32, 71.47, 66.09, 56.06, 27.41, 14.10. HRMS (ESI): calcd. for C<sub>14</sub>H<sub>15</sub>N<sub>2</sub>O<sub>5</sub><sup>+</sup> ([M+H]<sup>+</sup>): 291.0975, found 291.0977.

# 3-cyano-1,5,7-trimethyl-2-oxoindolin-3-yl ethyl carbonate



Yellow solid, mp: 109.9-110.5 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.25 (s, 1H), 7.01 (s, 1H), 4.24-4.13 (m, 2H), 3.51 (s, 3H), 2.53 (s, 3H), 2.30 (s, 3H), 1.29 (t, *J* = 7.1 Hz, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  166.72, 151.61, 139.53, 137.08, 134.07, 123.98, 122.32, 121.17, 113.34, 71.34, 65.95, 30.79, 20.80, 18.89, 14.13. HRMS (ESI): calcd. for C<sub>17</sub>H<sub>13</sub>N<sub>2</sub>O<sub>3</sub><sup>+</sup> ([M+H]<sup>+</sup>): 289.1183, found 289.1187.

# 1-cyanocyclopentyl ethyl carbonate



Colourless oil. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 4.26 (q, *J* = 7.1 Hz, 2H), 2.39-2.29(m, 4H), 1.88-1.82 (m, 4H), 1.34 (t, *J* = 7.2 Hz, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 153.02, 119.19, 78.82, 64.98, 39.05, 23.35, 14.22.

# 1-cyanocyclohexyl ethyl carbonate



Colourless oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 4.26 (q, *J* = 7.1 Hz, 2H), 2.37-2.29 (m, 2H), 1.90-1.76 (m, 4H), 1.72-1.59 (m, 4H), 1.34 (t, *J* = 7.2 Hz, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 152.56, 118.41, 75.03, 64.87, 35.21, 24.52, 22.22, 14.27.

# 4-cyanotetrahydro-2H-pyran-4-yl ethyl carbonate



Colourless oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  4.28 (q, J = 7.1 Hz, 2H), 3.99-3.92 (m, 2H), 3.78-3.70 (m, 2H), 2.43-2.3 (m, 2H), 2.13-2.05 (m, 2H), 1.35 (t, J = 7.1 Hz, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  152.37, 117.57, 72.08, 65.22, 63.69, 35.33, 14.22. HRMS (ESI): calcd. for C<sub>9</sub>H<sub>14</sub>NO<sub>4</sub><sup>+</sup> ([M+H]<sup>+</sup>): 200.0917, found 200.0918.

# 2-cyano-2,3-dihydro-1H-inden-2-yl ethyl carbonate



White solid, mp: 81.9-82.7 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.27-7.21 (m, 4H), 4.27 (q, *J* = 7.2 Hz, 2H), 3.76 (d, *J* = 17.1 Hz, 2H), 3.60 (d, *J* = 17.1 Hz, 2H), 1.33 (t, *J* = 7.1 Hz, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  153.08, 137.06, 128.03, 124.78, 118.77, 77.69, 65.29, 45.24, 14.21. HRMS (ESI): calcd. for C<sub>13</sub>H<sub>14</sub>NO<sub>3</sub><sup>+</sup> ([M+H]<sup>+</sup>): 232.0968, found 232.0969.

# **IV.** General Procedure and Experimental Details of Pd-Catalyzed Addition/Cyclization Sequences

#### 1) General Procedure and Experimental Details



Arylboronic acid 1 (3.0 equiv), substrate 2 (0.3 mmol), Pd(OAc)<sub>2</sub> (5 mol %), 2,2'-bipyridine (6 mol %), CH<sub>3</sub>COOH (5.0 equiv) and NMP (0.2 *M*) were placed in a sealed tube under nitrogen atmosphere. The mixture was stirred vigorously at 80 °C for 36 hours. Upon completion, the mixture was cooled to room temperature, and then NaHCO<sub>3</sub> was added until no bubbles were generated. After the aqueous phase was extracted with ethyl acetate three times, the combined organic layers were washed with saturated NaHCO<sub>3</sub> and then brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and finally concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel with ethyl acetate/petroleum ether (60-90°C) to afford the desired products **3**. Products **5a-5d** were prepared according to the similar procedure.

#### 1-methyl-4'-phenyl-2'H-spiro[indoline-3,5'-oxazole]-2,2'-dione



Yellow solid (79.8 mg, 91%), mp: 210.0-210.7 °C. 1H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.68 (d, J = 7.6 Hz, 2H), 7.60-7.49 (m, 2H), 7.37 (t, J = 7.8 Hz, 2H), 7.16-7.05 (m, 3H), 3.35 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  188.16, 168.14, 165.65, 144.36, 135.52, 132.80, 129.75, 129.56, 127.53, 125.29, 124.59, 122.80, 110.13, 88.24, 27.42. HRMS (ESI): calcd. for C<sub>17</sub>H<sub>13</sub>N<sub>2</sub>O<sub>3</sub><sup>+</sup> ([M+H]<sup>+</sup>): 293.0921, found 293.0918.

#### 1,4'-diphenyl-2'H-spiro[indoline-3,5'-oxazole]-2,2'-dione



Yellow solid (95.6 mg, 90%), mp: 225.4-226.2 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.83 (d, *J* = 7.8 Hz, 2H), 7.63-7.55 (m, 3H), 7.51-7.40 (m, 6H), 7.22 (d, *J* = 7.4 Hz, 1H), 7.16 (t, *J* = 7.5 Hz, 1H), 7.02 (d, *J* = 8.0 Hz, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  188.04, 167.36, 165.62, 144.49, 135.63, 133.21, 132.66, 130.22, 129.87, 129.64, 129.27, 127.67, 126.21, 125.60, 125.05, 122.58, 111.39, 88.35. HRMS (ESI): calcd. for C<sub>22</sub>H<sub>15</sub>N<sub>2</sub>O<sub>3</sub><sup>+</sup>([M+H]<sup>+</sup>): 355.1077, found 355.1076.

# 1-benzyl-4'-phenyl-2'H-spiro[indoline-3,5'-oxazole]-2,2'-dione



Yellow solid (101.6 mg, 92%), mp: 188.8-189.6 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.62 (d, *J* = 7.8 Hz, 2H), 7.55 (t, *J* = 7.5 Hz, 1H), 7.42 (t, *J* = 7.8 Hz, 1H), 7.36-7.30 (m, 5H), 7.29-7.24 (m, 2H), 7.13 (d, *J* = 7.4 Hz, 1H), 7.09-7.05 (m, 1H), 7.02 (d, *J* = 8.0 Hz, 1H), 5.16 (d, *J* = 15.3 Hz, 1H), 4.79 (d, *J* = 15.3 Hz, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 188.15, 168.19, 165.69, 143.46, 135.50, 134.55,

132.62, 129.96, 129.46, 129.21, 128.54, 128.10, 127.41, 125.38, 124.56, 122.87, 111.02, 88.27, 44.98. HRMS (ESI): calcd. for C<sub>23</sub>H<sub>17</sub>N<sub>2</sub>O<sub>3</sub><sup>+</sup> ([M+H]<sup>+</sup>): 369.1234, found 369.1239.

# 1-(4-methoxybenzyl)-4'-phenyl-2'H-spiro[indoline-3,5'-oxazole]-2,2'-dione



Yellow solid (106.3 mg, 89%), mp: 182.7-183.6 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.63-7.59 (m, 2H), 7.57-7.52 (m, 1H), 7.42 (td, *J* = 7.7, 1.5 Hz, 1H), 7.31-7.23 (m, 4H), 7.14-7.02 (m, 3H), 6.89-6.84 (m, 2H), 5.11 (d, *J* = 15.2 Hz, 1H), 4.72 (d, *J* = 15.1 Hz, 1H), 3.81 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  188.17, 168.12, 165.73, 159.74, 143.50, 135.48, 132.57, 129.97, 129.55, 129.44, 127.42, 126.57, 125.37, 124.49, 122.93, 114.53, 111.04, 88.31, 55.47, 44.45. HRMS (ESI): calcd. for C<sub>24</sub>H<sub>19</sub>N<sub>2</sub>O<sub>4</sub><sup>+</sup> ([M+H]<sup>+</sup>): 399.1339, found 399.1335.

### 1-(4-nitrobenzyl)-4'-phenyl-2'H-spiro[indoline-3,5'-oxazole]-2,2'-dione



Yellow solid (111.5 mg, 90%), mp: 211.1-211.8 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.21 (d, *J* = 8.1 Hz, 2H), 7.65-7.57 (m, 3H), 7.54-7.41 (m, 3H), 7.37-7.28 (m, 2H), 7.23-7.11 (m, 2H), 6.97-6.92 (m, 1H), 5.19 (d, *J* = 15.9 Hz, 1H), 4.98 (d, *J* = 15.9 Hz, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  187.83, 168.40, 165.42, 148.09, 142.88, 141.78, 135.77, 132.85, 129.85, 129.56, 128.72, 127.48, 125.82, 125.14, 124.46, 122.78, 110.55, 88.00, 44.26. HRMS (ESI): calcd. for C<sub>23</sub>H<sub>16</sub>N<sub>3</sub>O<sub>5</sub><sup>+</sup> ([M+H]<sup>+</sup>): 414.1084, found 414.1080.

4-chloro-1-methyl-4'-phenyl-2'H-spiro[indoline-3,5'-oxazole]-2,2'-dione



Yellow solid (86.1 mg, 88%), mp: 207.9-208.5 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.71-7.66 (m, 2H), 7.60 (t, *J* = 7.5 Hz, 1H), 7.47 (t, *J* = 8.1 Hz, 1H), 7.39 (t, *J* = 7.9 Hz, 2H), 7.05 (d, *J* = 8.3 Hz, 1H), 6.98 (d, *J* = 7.9 Hz, 1H), 3.35 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  187.28, 167.59, 165.39, 145.96, 135.62, 133.82, 133.11, 129.66, 129.32, 127.73, 125.09, 120.19, 108.35, 87.43, 27.69. HRMS (ESI): calcd. for C<sub>17</sub>H<sub>12</sub>ClN<sub>2</sub>O<sub>3</sub><sup>+</sup> ([M+H]<sup>+</sup>): 327.0531, found 327.0527.

#### 5-chloro-1-methyl-4'-phenyl-2'H-spiro[indoline-3,5'-oxazole]-2,2'-dione



Yellow solid (91.0 mg, 93%), mp: 209.7-210.4 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.68 (d, *J* = 7.7 Hz, 2H), 7.61 (t, *J* = 7.6 Hz, 1H), 7.50 (dd, *J* = 8.4, 2.1 Hz, 1H), 7.40 (t, *J* = 7.9 Hz, 2H), 7.13 (d, *J* = 2.1 Hz, 1H), 7.02 (d, *J* = 8.4 Hz, 1H), 3.36 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  187.50, 167.81, 165.20, 142.91, 135.80, 132.73, 130.06, 129.77, 129.73, 127.33, 125.75, 124.35, 111.11, 87.57, 27.61. HRMS (ESI): calcd. for C<sub>17</sub>H<sub>12</sub>ClN<sub>2</sub>O<sub>3</sub><sup>+</sup> ([M+H]<sup>+</sup>): 327.0531, found 327.0532.

### 6-chloro-1-methyl-4'-phenyl-2'H-spiro[indoline-3,5'-oxazole]-2,2'-dione



Yellow solid (88.0 mg, 90%), mp: 207.1-207.8 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.67 (d, *J* = 7.4 Hz, 2H), 7.60 (t, *J* = 7.5 Hz, 1H), 7.40 (t, *J* = 7.9 Hz, 2H), 7.14-7.05 (m, 3H), 3.35 (s, 3H).<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 187.66, 168.13, 165.30, 145.59, 138.90, 135.73, 129.71, 127.38, 126.31, 124.54,

121.12, 111.00, 87.49, 27.59. HRMS (ESI): calcd. for  $C_{17}H_{12}ClN_2O_3^+$  ([M+H]<sup>+</sup>): 327.0531, found 327.0531.

# 7-chloro-1-methyl-4'-phenyl-2'H-spiro[indoline-3,5'-oxazole]-2,2'-dione



Yellow solid (87.8 mg, 90%), mp: 204.1-204.9 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.69 (d, *J* = 7.8 Hz, 2H), 7.61 (t, *J* = 7.6 Hz, 1H), 7.43 (m, 3H), 7.04 (d, *J* = 8.7 Hz, 2H), 3.71 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  187.52, 168.46, 165.25, 140.31, 135.74, 134.98, 129.76, 129.71, 127.32, 125.34, 123.88, 117.34, 87.31, 30.93. HRMS (ESI): calcd. for C<sub>17</sub>H<sub>12</sub>ClN<sub>2</sub>O<sub>3</sub><sup>+</sup> ([M+H]<sup>+</sup>): 327.0531, found 327.0532.

1-methyl-5-nitro-4'-phenyl-2'H-spiro[indoline-3,5'-oxazole]-2,2'-dione



Yellow solid (87.6 mg, 87%), mp: 210.3-211.1 °C. <sup>1</sup>H NMR (500 MHz, DMSO)  $\delta$  8.76 (s, 1H), 8.52 (d, *J* = 8.9 Hz, 1H), 7.75-7.50 (m, 6H), 3.42 (s, 3H). <sup>13</sup>C NMR (125 MHz, DMSO)  $\delta$  186.39, 168.55, 164.74, 150.00, 143.95, 136.01, 130.08, 129.25, 126.50, 122.51, 122.37, 111.74, 86.55, 27.90. HRMS (ESI): calcd. for C<sub>17</sub>H<sub>12</sub>N<sub>3</sub>O<sub>5</sub><sup>+</sup> ([M+H]<sup>+</sup>): 338.0771, found 338.0771.

5-bromo-1-methyl-4'-phenyl-2'H-spiro[indoline-3,5'-oxazole]-2,2'-dione



Yellow solid (95.4 mg, 86%), mp: 220.5-221.3 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.69-7.58 (m, 4H), 7.40 (t, *J* = 7.8 Hz, 2H), 7.28-7.24 (m, 1H), 6.97 (d, *J* = 8.4 Hz, 1H), 3.35 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  187.39, 167.60, 165.08, 143.28, 135.70, 135.53, 129.65, 129.62, 128.31, 127.19, 124.50, 116.94, 111.46, 87.38, 27.47. HRMS (ESI): calcd. for C<sub>17</sub>H<sub>12</sub>BrN<sub>2</sub>O<sub>3</sub><sup>+</sup> ([M+H]<sup>+</sup>): 371.0026, found 371.0027.

5-iodo-1-methyl-4'-phenyl-2'H-spiro[indoline-3,5'-oxazole]-2,2'-dione



Yellow solid (100.3 mg, 80%), mp: 211.5-212.2 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.84 (d, *J* = 8.2 Hz, 1H), 7.68 (d, *J* = 7.7 Hz, 2H), 7.61 (t, *J* = 7.6 Hz, 1H), 7.45-7.34 (m, 3H), 6.86 (d, *J* = 8.2 Hz, 1H), 3.34 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  187.49, 167.58, 165.21, 144.05, 141.54, 135.79, 133.90, 131.07, 129.79, 129.74, 127.34, 124.89, 111.97, 86.64, 27.52. HRMS (ESI): calcd. for C<sub>17</sub>H<sub>12</sub>IN<sub>2</sub>O<sub>3</sub><sup>+</sup> ([M+H]<sup>+</sup>): 418.9887, found 418.9884.

#### 1,5-dimethyl-4'-phenyl-2'H-spiro[indoline-3,5'-oxazole]-2,2'-dione



Yellow solid (82.6 mg, 90%), mp: 149.5-150.4 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.69 (d, *J* = 7.5 Hz, 2H), 7.58 (t, *J* = 7.5 Hz, 1H), 7.38 (t, *J* = 7.9 Hz, 2H), 7.31 (d, *J* = 7.9 Hz, 1H), 7.02-6.91 (m, 2H), 3.33 (s, 3H), 2.28 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  188.25, 168.11, 165.70, 141.89, 135.46, 134.54, 133.03, 129.79, 129.54, 127.59, 125.88, 122.76, 109.89, 88.45, 27.42, 21.05. HRMS (ESI): calcd. for C<sub>18</sub>H<sub>15</sub>N<sub>2</sub>O<sub>3</sub><sup>+</sup> ([M+H]<sup>+</sup>): 307.1077, found 307.1078.

#### 5-methoxy-1-methyl-4'-phenyl-2'H-spiro[indoline-3,5'-oxazole]-2,2'-dione



Yellow solid (88.9 mg, 92%), mp: 205.3-206.1 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.69 (d, *J* = 7.8 Hz, 2H), 7.58 (t, *J* = 7.5 Hz, 1H), 7.38 (t, *J* = 7.7 Hz, 2H), 7.06-6.96 (m, 2H), 6.72 (d, *J* = 2.5 Hz, 1H), 3.73 (s, 3H), 3.32 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  188.18, 167.90, 165.65, 157.19, 137.42, 135.54, 129.80, 129.57, 127.54, 123.79, 117.54, 111.78, 110.81, 88.52, 56.00, 27.48. HRMS (ESI): calcd. for C<sub>18</sub>H<sub>15</sub>N<sub>2</sub>O<sub>4</sub><sup>+</sup> ([M+H]<sup>+</sup>): 323.1026, found 323.1024.

#### 1,5,7-trimethyl-4'-phenyl-2'H-spiro[indoline-3,5'-oxazole]-2,2'-dione



Yellow solid (91.4 mg, 95%), mp: 216.9-217.7 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.71 (d, *J* = 7.7 Hz, 2H), 7.58 (t, *J* = 7.5 Hz, 1H), 7.42-7.36 (m, 2H), 7.04 (s, 1H), 6.75 (s, 1H), 3.57 (s, 3H), 2.63 (s, 3H), 2.21 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  188.29, 168.88, 165.75, 139.49, 136.88, 135.37, 134.33, 129.86, 129.52, 127.69, 123.70, 123.37, 121.56, 88.19, 30.73, 20.71, 18.94. HRMS (ESI): calcd. for C<sub>19</sub>H<sub>17</sub>N<sub>2</sub>O<sub>3</sub><sup>+</sup> ([M+H]<sup>+</sup>): 321.1234, found 321.1234.

# 1-methyl-4'-(p-tolyl)-2'H-spiro[indoline-3,5'-oxazole]-2,2'-dione



Yellow solid (86.4 mg, 94%), mp: 178.6-179.2 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.57 (d, *J* = 8.4 Hz, 2H), 7.54-7.49 (m, 1H), 7.17 (d, *J* = 8.1 Hz, 2H), 7.15-7.10 (m, 2H), 7.05 (d, *J* = 8.0 Hz, 1H), 3.35 (s, 3H), 2.36 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 187.90, 168.30, 165.89, 147.18, 144.33, 132.68,

130.34, 129.84, 125.25, 124.86, 124.53, 123.09, 110.03, 88.07, 27.37, 22.02. HRMS (ESI): calcd. for C<sub>18</sub>H<sub>15</sub>N<sub>2</sub>O<sub>3</sub><sup>+</sup> ([M+H]<sup>+</sup>): 307.1077, found 307.1078.

4'-(4-methoxyphenyl)-1-methyl-2'H-spiro[indoline-3,5'-oxazole]-2,2'-dione



Yellow solid (87.0 mg, 90%), mp: 220.3-221.2 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.64 (d, *J* = 8.4 Hz, 2H), 7.52 (t, *J* = 7.6 Hz, 1H), 7.16-7.09 (m, 2H), 7.06 (d, *J* = 7.9 Hz, 1H), 6.84 (d, *J* = 8.5 Hz, 2H), 3.82 (s, 3H), 3.35 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  186.93, 168.52, 166.10, 165.65, 144.27, 132.62, 132.31, 125.29, 124.53, 123.42, 120.02, 115.12, 110.01, 87.76, 55.82, 27.36. HRMS (ESI): calcd. for C<sub>18</sub>H<sub>15</sub>N<sub>2</sub>O<sub>4</sub><sup>+</sup> ([M+H]<sup>+</sup>): 323.1026, found 323.1027.

4'-(4-(tert-butyl)phenyl)-1-methyl-2'H-spiro[indoline-3,5'-oxazole]-2,2'-dione



Yellow solid (91.9 mg, 88%), mp: 191.8-192.6°C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.62 (d, *J* = 8.7 Hz, 2H), 7.55-7.50 (m, 1H), 7.38 (d, *J* = 8.6 Hz, 2H), 7.16-7.09 (m, 2H), 7.07 (d, *J* = 7.9 Hz, 1H), 3.35 (s, 3H), 1.27 (s, 9H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  187.75, 168.37, 165.95, 160.01, 144.39, 132.66, 129.82, 126.68, 125.36, 124.80, 124.55, 123.18, 110.01, 88.08, 35.58, 30.93, 27.40. HRMS (ESI): calcd. for C<sub>21</sub>H<sub>21</sub>N<sub>2</sub>O<sub>3</sub><sup>+</sup> ([M+H]<sup>+</sup>): 349.1547, found 349.1551.

4'-(4-fluorophenyl)-1-methyl-2'H-spiro[indoline-3,5'-oxazole]-2,2'-dione



SI-20

Yellow solid (76.3 mg, 82%), mp: 194.4-195.1 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.74-7.68 (m, 2H), 7.58-7.51 (m, 1H), 7.17-7.03 (m, 5H), 3.36 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  186.76, 168.40, 168.07, 165.81, 165.42, 144.33, 132.94, 132.62, 132.53, 125.39, 124.73, 123.98, 123.95, 122.65, 117.26, 117.04, 110.18, 88.06, 27.48. HRMS (ESI): calcd. for C<sub>17</sub>H<sub>12</sub>FN<sub>2</sub>O<sub>3</sub><sup>+</sup> ([M+H]<sup>+</sup>): 311.0826, found 311.0826.

4'-(4-chlorophenyl)-1-methyl-2'H-spiro[indoline-3,5'-oxazole]-2,2'-dione

![](_page_20_Figure_2.jpeg)

Yellow solid (73.4 mg, 75%), mp: 180.6-181.4 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.63-7.59 (m, 2H), 7.57-7.51 (m, 1H), 7.37-7.34 (m, 2H), 7.14 (d, *J* = 4.4 Hz, 2H), 7.08 (d, *J* = 7.9 Hz, 1H), 3.35 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  187.03, 167.93, 165.33, 144.33, 142.34, 132.98, 130.95, 130.06, 125.93, 125.36, 124.73, 122.47, 110.21, 88.13, 27.48. HRMS (ESI): calcd. for C<sub>17</sub>H<sub>12</sub>ClN<sub>2</sub>O<sub>3</sub><sup>+</sup> ([M+H]<sup>+</sup>): 327.0531, found 327.0532.

#### 4'-(4-bromophenyl)-1-methyl-2'H-spiro[indoline-3,5'-oxazole]-2,2'-dione

![](_page_20_Figure_5.jpeg)

Yellow solid (69.9 mg, 63%), mp: 190.5-191.3 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.56-7.51 (m, 5H), 7.14-7.12 (m, 2H), 7.07 (d, J = 8.0 Hz, 1H), 3.35 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  187.21, 167.91, 165.31, 144.35, 133.06, 132.97, 131.22, 130.94, 126.37, 125.39, 124.74, 122.48, 110.17, 88.13, 27.49. HRMS (ESI): calcd. for C<sub>17</sub>H<sub>12</sub>BrN<sub>2</sub>O<sub>3</sub><sup>+</sup> ([M+H]<sup>+</sup>): 371.0026, found 371.0027.

1-methyl-4'-(o-tolyl)-2'H-spiro[indoline-3,5'-oxazole]-2,2'-dione

![](_page_21_Figure_0.jpeg)

Yellow solid (71.7 mg, 78%), mp: 199.4-200.2 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.49 (t, *J* = 7.7 Hz, 1H), 7.41-7.30 (m, 2H), 7.18-7.10 (m, 2H), 7.05-6.98 (m, 2H), 6.88 (d, *J* = 8.0 Hz, 1H), 3.28 (s, 3H), 2.70 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  188.90, 168.34, 165.93, 144.43, 142.62, 133.62, 133.00, 132.60, 129.27, 126.83, 126.24, 124.93, 124.47, 122.59, 110.00, 89.66, 27.31, 23.32. HRMS (ESI): calcd. for C<sub>18</sub>H<sub>15</sub>N<sub>2</sub>O<sub>3</sub><sup>+</sup> ([M+H]<sup>+</sup>): 307.1077, found 307.1077.

1-methyl-4'-(m-tolyl)-2'H-spiro[indoline-3,5'-oxazole]-2,2'-dione

![](_page_21_Figure_3.jpeg)

Yellow solid (82.7 mg, 90%), mp: 183.7-184.5 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.69 (s, 1H), 7.55-7.50 (m, 1H), 7.38 (d, *J* = 7.4 Hz, 1H), 7.26 (d, *J* = 7.6 Hz, 1H), 7.21 (t, *J* = 7.7 Hz, 1H), 7.14-7.10 (m, 2H), 7.07 (d, *J* = 7.9 Hz, 1H), 3.35 (s, 3H), 2.29 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  188.31, 168.20, 165.70, 144.36, 139.54, 136.40, 132.74, 130.46, 129.34, 127.46, 126.70, 125.27, 124.57, 122.93, 109.99, 88.24, 27.38, 21.35. HRMS (ESI): calcd. for C<sub>18</sub>H<sub>15</sub>N<sub>2</sub>O<sub>3</sub><sup>+</sup> ([M+H]<sup>+</sup>): 307.1077, found 307.1078.

4'-(3,5-dimethylphenyl)-1-methyl-2'H-spiro[indoline-3,5'-oxazole]-2,2'-dione

![](_page_21_Figure_6.jpeg)

Yellow solid (88.3 mg, 92%), mp: 217.9-218.6 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.55-7.50 (m, 1H), 7.27 (s, 2H), 7.19 (s, 1H), 7.15-7.10 (m, 2H), 7.06 (d, *J* = 7.9 Hz, 1H), 3.34 (s, 3H), 2.21 (s, 6H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 188.43, 168.28, 165.78, 144.38, 139.22, 137.34, 132.69, 127.53, 125.30, 124.57, 123.09, 109.79, 88.23, 27.34, 21.26. HRMS (ESI): calcd. for  $C_{19}H_{17}N_2O_3^+$  ([M+H]<sup>+</sup>): 321.1234, found 321.1238.

1-methyl-4'-(naphthalen-1-yl)-2'H-spiro[indoline-3,5'-oxazole]-2,2'-dione

![](_page_22_Figure_2.jpeg)

Yellow solid (92.4 mg, 90%), mp: 218.8-219.5 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  9.34 (d, J = 8.7 Hz, 1H), 8.00 (d, J = 7.6 Hz, 1H), 7.85 (d, J = 8.1 Hz, 1H), 7.73-7.69 (m, 1H), 7.61-7.56 (m, 1H), 7.51-7.46 (m, 1H), 7.27-7.21 (m, 2H), 7.18 (d, J = 7.4 Hz, 1H), 7.10 (t, J = 7.6 Hz, 1H), 7.01 (d, J = 7.9 Hz, 1H), 3.30 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  188.21, 168.52, 165.84, 144.39, 136.09, 134.18, 132.63, 131.52, 130.54, 129.65, 129.01, 127.40, 126.70, 125.02, 124.55, 124.38, 123.15, 110.05, 89.80, 27.38. HRMS (ESI): calcd. for C<sub>21</sub>H<sub>15</sub>N<sub>2</sub>O<sub>3</sub><sup>+</sup>([M+H]<sup>+</sup>): 343.1077, found 343.1073.

1-methyl-4'-(naphthalen-2-yl)-2'H-spiro[indoline-3,5'-oxazole]-2,2'-dione

![](_page_22_Figure_5.jpeg)

Yellow solid (83.1 mg, 81%), mp: 219.4-220.1 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.06 (s, 1H), 7.84-7.79 (m, 3H), 7.68-7.48 (m, 4H), 7.19 (d, *J* = 7.3 Hz, 1H), 7.15-7.10 (m, 2H), 3.39 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  187.86, 168.18, 144.36, 136.39, 132.69, 132.31, 129.94, 129.80, 129.43, 127.92, 127.38, 125.37, 124.86, 124.56, 124.33, 109.81, 88.17, 27.33. HRMS (ESI): calcd. for C<sub>21</sub>H<sub>15</sub>N<sub>2</sub>O<sub>3</sub><sup>+</sup>([M+H]<sup>+</sup>): 343.1077, found 343.1074.

1-methyl-4'-(phenanthren-9-yl)-2'H-spiro[indoline-3,5'-oxazole]-2,2'-dione

![](_page_23_Figure_0.jpeg)

Yellow solid (97.6 mg, 83%), mp: 249.9-250.8 °C. <sup>1</sup>H NMR (400 MHz, DMSO)  $\delta$  9.09-9.04 (m, 1H), 8.94-8.89 (m, 1H), 8.85 (d, *J* = 8.3 Hz, 1H), 7.87-7.79 (m, 3H), 7.75-7.63 (m, 3H), 7.59-7.51 (m, 2H), 7.30 (d, *J* = 7.9 Hz, 1H), 7.13 (td, *J* = 7.6, 1.0 Hz, 1H), 3.36 (s, 3H). <sup>13</sup>C NMR (100 MHz, DMSO)  $\delta$  188.10, 168.02, 165.24, 144.23, 132.78, 132.16, 131.86, 130.99, 130.45, 130.23, 128.52, 128.33, 128.24, 128.00, 127.67, 126.61, 125.81, 124.27, 123.57, 123.20, 123.12, 121.59, 110.89, 89.89, 27.33. HRMS (ESI): calcd. for C<sub>25</sub>H<sub>17</sub>N<sub>2</sub>O<sub>3</sub><sup>+</sup> ([M+H]<sup>+</sup>): 393.1234, found 393.1231.

#### 3-carbamoyl-1-methylindolin-3-yl ethyl carbonate

![](_page_23_Figure_3.jpeg)

White solid , mp: 180.1-180.9 °C. <sup>1</sup>H NMR (500 MHz, DMSO)  $\delta$  7.90 (br, 1H), 7.81 (br, 1H), 7.40 (t, J = 7.7 Hz, 1H), 7.33 (d, J = 7.3 Hz, 1H), 7.09-7.04 (m, 2H), 4.11 -4.02 (m, 2H), 3.14 (s, 3H), 1.16 (t, J = 7.1 Hz, 3H). <sup>13</sup>C NMR (125 MHz, DMSO)  $\delta$  170.63, 166.15, 151.29, 145.29, 130.66, 125.46, 122.63, 122.60, 109.08, 81.72, 64.87, 26.42, 13.86. HRMS (ESI): calcd. for C<sub>13</sub>H<sub>14</sub>N<sub>2</sub>NaO<sub>5</sub><sup>+</sup> ([M+Na]<sup>+</sup>): 301.0795, found 301.0790.

# 4-phenyl-1-oxa-3-azaspiro[4.4]non-3-en-2-one

![](_page_23_Figure_6.jpeg)

White solid (54.3 mg, 84%), mp: 102.1-102.7 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.12-8.05 (m, 2H), 7.72-7.65 (m, 1H), 7.58-7.53 (m, 2H), 2.48-2.37 (m, 2H), 2.22-2.04 (m, 6H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  195.60, 165.57, 134.81, 130.05, 129.38, 127.97, 98.84, 39.24, 26.30. HRMS (ESI): calcd. for C<sub>13</sub>H<sub>14</sub>NO<sub>2</sub><sup>+</sup> ([M+H]<sup>+</sup>): 216.1019, found 216.1015.

4-phenyl-1-oxa-3-azaspiro[4.5]dec-3-en-2-one

![](_page_24_Figure_1.jpeg)

White solid (58.4 mg, 85%), mp: 98.5-99.2 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.20 (d, *J* = 8.0 Hz, 2H), 7.67 (t, *J* = 7.4 Hz, 1H), 7.56 (t, *J* = 7.8 Hz, 2H), 2.23-2.13 (m, 2H), 1.96-1.80 (m, 7H), 1.49-1.38 (m, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  196.80, 165.40, 134.70, 130.42, 129.31, 128.37, 91.79, 34.49, 24.67, 22.22. HRMS (ESI): calcd. for C<sub>14</sub>H<sub>16</sub>NO<sub>2</sub><sup>+</sup> ([M+H]<sup>+</sup>): 230.1176, found 230.1178.

## 4-phenyl-1,8-dioxa-3-azaspiro[4.5]dec-3-en-2-one

![](_page_24_Figure_4.jpeg)

White solid (56.3 mg, 81%), mp: 140.2-141.0 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.27-8.22 (m, 2H), 7.74-7.68 (m, 1H), 7.59 (t, *J* = 7.8 Hz, 2H), 4.14-4.05 (m, 2H), 3.95-3.87 (m, 2H), 2.65-2.55 (m, 2H), 1.76-1.68 (m, 2H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  194.82, 164.79, 135.15, 130.52, 129.50, 127.84, 88.57, 64.21, 34.36. HRMS (ESI): calcd. for C<sub>13</sub>H<sub>14</sub>NO<sub>3</sub><sup>+</sup> ([M+H]<sup>+</sup>): 232.0968, found 232.0970.

# 4'-phenyl-1,3-dihydro-2'H-spiro[indene-2,5'-oxazol]-2'-one

![](_page_24_Figure_7.jpeg)

White solid (67.9 mg, 86%), mp: 144.1-144.8 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.97-7.92 (m, 2H), 7.68-7.62 (m, 1H), 7.50-7.44 (m, 2H), 7.37-7.29 (m, 4H), 3.85-3.79 (m, 2H), 3.59-3.5 (m, 2H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  195.27, 165.64, 138.46, 135.20, 130.09, 129.53, 128.10, 127.40, 125.09, 95.74, 45.09. HRMS (ESI): calcd. for C<sub>17</sub>H<sub>14</sub>NO<sub>2</sub><sup>+</sup> ([M+H]<sup>+</sup>): 264.1019, found 264.1020.

# V. Synthetic Transformation

![](_page_25_Figure_1.jpeg)

To solution of **3aa** (0.25 mmol) in THF (0.1 M) was added BH<sub>3</sub> • Me<sub>2</sub>S (1.5 equiv) dropwise at 0  $^{\circ}$ C.<sup>4</sup> After stirring at 30  $^{\circ}$ C for 24 hours, the reaction mixture was cooled to 0  $^{\circ}$ C and quenched by dropwise addition of a 1:1 mixture of THF:H<sub>2</sub>O. The aqueous layer was extracted with dichloromethane three times. The combined organic layers were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and evaporated under reduced pressure. The crude product was purified by flash column chromatography on silica gel with ethyl acetate/petroleum ether (60-90°C) to afford the desired product **7**.

### 1-methyl-4'-phenylspiro[indoline-3,5'-oxazolidine]-2,2'-dione

![](_page_25_Figure_4.jpeg)

White solid (64.7 mg, 88%) , mp: 229.6-230.4 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.63 (d, *J* = 7.4 Hz, 1H), 7.43 (t, *J* = 7.8 Hz, 1H), 7.28-7.20 (m, 4H), 7.08-7.05 (m, 2H), 6.72 (d, *J* = 7.8 Hz, 1H), 6.41 (br, 1H), 5.33 (s, 1H), 2.78 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  170.89, 158.24, 144.46, 132.65, 131.70, 129.06, 128.51, 126.23, 124.88, 124.51, 123.57, 108.62, 84.42, 65.21, 25.86. HRMS (ESI): calcd. for C<sub>17</sub>H<sub>15</sub>N<sub>2</sub>O<sub>3</sub><sup>+</sup> ([M+H]<sup>+</sup>): 295.1077, found 295.1078.

# **VI. References**

- 1. A. Baeza, C. Nájera, M. G. Retamosa, J. M. Sansano. Synthesis, 2005, 16, 2787.
- 2. S. Aokia, S. Kotanib, M. Sugiuraa, M. Nakajimaa. Tetrahedron Letters, 2010, 51, 3547.
- 3. Y. Ogura, M. Akakura, A. Sakakura, and K. Ishihara. Angew. Chem. Int. Ed. 2013, 52, 8299.
- 4. L. Zhao, W.-W. Liao. Org. Chem. Front., 2018, 5, 801.

# VII. Crystal Data and Structure Refinement

1) Compound **3aa** 

![](_page_27_Figure_2.jpeg)

![](_page_27_Figure_3.jpeg)

CCDC 1943540

| Identification code                     | 3aa                                |                         |
|-----------------------------------------|------------------------------------|-------------------------|
| Empirical formula                       | C17 H12 N2 O3                      |                         |
| Formula weight                          | 292.29                             |                         |
| Temperature                             | 293(2) K                           |                         |
| Wavelength                              | 0.71073 Å                          |                         |
| Crystal system                          | Monoclinic                         |                         |
| Space group                             | P2 <sub>1</sub> /c                 |                         |
| Unit cell dimensions                    | a = 9.3850(5) Å                    | α= 90°.                 |
|                                         | b = 9.0474(4)  Å                   | β= 97.418(2)°.          |
|                                         | c = 16.9250(9) Å                   | $\gamma = 90^{\circ}$ . |
| Volume                                  | 1425.07(12) Å <sup>3</sup>         |                         |
| Ζ                                       | 4                                  |                         |
| Density (calculated)                    | 1.362 Mg/m <sup>3</sup>            |                         |
| Absorption coefficient                  | 0.095 mm <sup>-1</sup>             |                         |
| F(000)                                  | 608                                |                         |
| Crystal size                            | 0.21 x 0.20 x 0.18 mm <sup>3</sup> |                         |
| Theta range for data collection         | 3.05 to 27.48°.                    |                         |
| Index ranges                            | -12<=h<=12, -11<=k<=11, -21        | <=l<=21                 |
| Reflections collected                   | 28489                              |                         |
| Independent reflections                 | 3257 [R(int) = 0.0453]             |                         |
| Completeness to theta = $27.48^{\circ}$ | 99.8 %                             |                         |
| Absorption correction                   | Semi-empirical from equivalen      | ts                      |

Table 1. Crystal data and structure refinement for 3aa.

| Max. and min. transmission        | 0.9830 and 0.9803                           |
|-----------------------------------|---------------------------------------------|
| Refinement method                 | Full-matrix least-squares on F <sup>2</sup> |
| Data / restraints / parameters    | 3257 / 0 / 200                              |
| Goodness-of-fit on F <sup>2</sup> | 1.018                                       |
| Final R indices [I>2sigma(I)]     | R1 = 0.0456, wR2 = 0.1157                   |
| R indices (all data)              | R1 = 0.0758, wR2 = 0.1407                   |
| Largest diff. peak and hole       | 0.156 and -0.178 e.Å <sup>-3</sup>          |

Table 2. Atomic coordinates  $(x \ 10^4)$  and equivalent isotropic displacement parameters (Å<sup>2</sup>x  $10^3$ ) for Y. U(eq) is defined as one third of the trace of the orthogonalized U<sup>ij</sup> tensor.

|       | Х        | У        | Z       | U(eq)  |
|-------|----------|----------|---------|--------|
| C(1)  | 7314(2)  | 1043(2)  | 2539(1) | 49(1)  |
| C(2)  | 6974(2)  | 1293(2)  | 3292(1) | 54(1)  |
| C(3)  | 5872(2)  | 517(2)   | 3574(1) | 62(1)  |
| C(4)  | 5115(2)  | -526(2)  | 3093(1) | 70(1)  |
| C(5)  | 5444(2)  | -776(2)  | 2341(1) | 62(1)  |
| C(6)  | 6543(2)  | 3(2)     | 2048(1) | 47(1)  |
| C(7)  | 6867(2)  | -349(2)  | 1245(1) | 50(1)  |
| C(8)  | 6731(2)  | -1353(2) | 71(1)   | 72(1)  |
| C(9)  | 8167(2)  | 182(2)   | 884(1)  | 51(1)  |
| C(10) | 9594(2)  | -376(2)  | 1361(1) | 57(1)  |
| C(11) | 9770(2)  | 2120(2)  | 1225(1) | 51(1)  |
| C(12) | 10287(2) | 3541(2)  | 1287(1) | 66(1)  |
| C(13) | 9402(3)  | 4651(2)  | 946(1)  | 72(1)  |
| C(14) | 8048(2)  | 4359(2)  | 557(1)  | 70(1)  |
| C(15) | 7529(2)  | 2916(2)  | 498(1)  | 59(1)  |
| C(16) | 8409(2)  | 1813(2)  | 831(1)  | 48(1)  |
| C(17) | 11845(2) | 753(3)   | 2014(2) | 83(1)  |
| N(1)  | 6070(2)  | -1207(2) | 766(1)  | 67(1)  |
| N(2)  | 10440(2) | 820(2)   | 1542(1) | 58(1)  |
| O(1)  | 6311(2)  | -2085(2) | -498(1) | 102(1) |
| O(2)  | 7958(2)  | -527(2)  | 117(1)  | 69(1)  |
| O(3)  | 9873(2)  | -1656(2) | 1536(1) | 82(1)  |
|       |          |          |         |        |

| 1.371(2)   |
|------------|
| 1.395(2)   |
| 1.385(3)   |
| 1.382(3)   |
| 1.366(3)   |
| 1.393(2)   |
| 1.465(2)   |
| 1.290(2)   |
| 1.511(2)   |
| 1.193(2)   |
| 1.367(2)   |
| 1.406(3)   |
| 1.439(2)   |
| 1.497(2)   |
| 1.555(3)   |
| 1.216(2)   |
| 1.353(2)   |
| 1.374(2)   |
| 1.390(2)   |
| 1.407(2)   |
| 1.381(3)   |
| 1.380(3)   |
| 1.392(3)   |
| 1.370(2)   |
| 1.452(3)   |
|            |
| 120.03(16) |
| 120.66(17) |
| 119.60(19) |
| 120.01(18) |
| 121.03(18) |
| 118.66(17) |
| 118.21(15) |
| 123.09(15) |
| 122.70(16) |
| 111.76(16) |
|            |

Table 3. Bond lengths [Å] and angles [°] for Y.

| C(6)-C(7)-C(9)    | 125.50(14) |
|-------------------|------------|
| O(1)-C(8)-O(2)    | 122.5(2)   |
| O(1)-C(8)-N(1)    | 126.4(2)   |
| O(2)-C(8)-N(1)    | 111.10(15) |
| O(2)-C(9)-C(16)   | 112.90(14) |
| O(2)-C(9)-C(7)    | 101.54(13) |
| C(16)-C(9)-C(7)   | 118.28(14) |
| O(2)-C(9)-C(10)   | 109.33(14) |
| C(16)-C(9)-C(10)  | 102.94(13) |
| C(7)-C(9)-C(10)   | 111.92(15) |
| O(3)-C(10)-N(2)   | 127.19(18) |
| O(3)-C(10)-C(9)   | 125.42(17) |
| N(2)-C(10)-C(9)   | 107.39(15) |
| C(12)-C(11)-C(16) | 121.17(17) |
| C(12)-C(11)-N(2)  | 128.10(17) |
| C(16)-C(11)-N(2)  | 110.71(14) |
| C(11)-C(12)-C(13) | 117.47(18) |
| C(14)-C(13)-C(12) | 121.80(18) |
| C(13)-C(14)-C(15) | 120.41(19) |
| C(16)-C(15)-C(14) | 117.84(18) |
| C(15)-C(16)-C(11) | 121.30(15) |
| C(15)-C(16)-C(9)  | 130.91(16) |
| C(11)-C(16)-C(9)  | 107.76(15) |
| C(7)-N(1)-C(8)    | 107.44(16) |
| C(10)-N(2)-C(11)  | 111.18(15) |
| C(10)-N(2)-C(17)  | 123.79(17) |
| C(11)-N(2)-C(17)  | 125.02(16) |
| C(8)-O(2)-C(9)    | 108.13(14) |
|                   |            |

Symmetry transformations used to generate equivalent atoms:

Table 4.Anisotropic displacement parameters $(Å^2x \ 10^3)$  for Y.The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [  $h^2 \ a^{*2}U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}$  ]

|      | U <sup>11</sup> | U <sup>22</sup> | U <sup>33</sup> | U <sup>23</sup> | U <sup>13</sup> | U <sup>12</sup> |
|------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| C(1) | 48(1)           | 40(1)           | 58(1)           | 1(1)            | 4(1)            | -2(1)           |

| C(2)  | 54(1)  | 49(1)  | 58(1)  | -1(1)  | -2(1) | 4(1)   |
|-------|--------|--------|--------|--------|-------|--------|
| C(3)  | 64(1)  | 69(1)  | 52(1)  | 8(1)   | 6(1)  | 9(1)   |
| C(4)  | 63(1)  | 80(1)  | 67(1)  | 10(1)  | 10(1) | -15(1) |
| C(5)  | 58(1)  | 62(1)  | 65(1)  | -2(1)  | 4(1)  | -18(1) |
| C(6)  | 45(1)  | 38(1)  | 56(1)  | 3(1)   | 0(1)  | -1(1)  |
| C(7)  | 50(1)  | 37(1)  | 62(1)  | -1(1)  | 3(1)  | -6(1)  |
| C(8)  | 81(1)  | 62(1)  | 72(1)  | -20(1) | 6(1)  | -20(1) |
| C(9)  | 56(1)  | 42(1)  | 56(1)  | -10(1) | 7(1)  | -6(1)  |
| C(10) | 54(1)  | 46(1)  | 72(1)  | -8(1)  | 14(1) | 1(1)   |
| C(11) | 53(1)  | 50(1)  | 52(1)  | -5(1)  | 10(1) | -10(1) |
| C(12) | 69(1)  | 56(1)  | 73(1)  | -4(1)  | 6(1)  | -22(1) |
| C(13) | 97(2)  | 47(1)  | 74(1)  | -2(1)  | 15(1) | -23(1) |
| C(14) | 91(2)  | 50(1)  | 70(1)  | 11(1)  | 11(1) | -1(1)  |
| C(15) | 64(1)  | 56(1)  | 55(1)  | 4(1)   | 3(1)  | -6(1)  |
| C(16) | 54(1)  | 43(1)  | 46(1)  | -3(1)  | 8(1)  | -8(1)  |
| C(17) | 55(1)  | 91(2)  | 99(2)  | 4(1)   | -8(1) | -4(1)  |
| N(1)  | 73(1)  | 60(1)  | 66(1)  | -14(1) | 6(1)  | -22(1) |
| N(2)  | 46(1)  | 55(1)  | 72(1)  | -4(1)  | 2(1)  | -3(1)  |
| O(1)  | 119(1) | 102(1) | 83(1)  | -48(1) | 10(1) | -38(1) |
| O(2)  | 76(1)  | 66(1)  | 65(1)  | -24(1) | 15(1) | -16(1) |
| O(3)  | 78(1)  | 47(1)  | 120(1) | -2(1)  | 9(1)  | 10(1)  |
|       |        |        |        |        |       |        |

Table 5. Hydrogen coordinates (  $x \ 10^4$ ) and isotropic displacement parameters (Å<sup>2</sup>x 10<sup>3</sup>) for Y.

|       | Х     | У     | Z    | U(eq) |
|-------|-------|-------|------|-------|
|       |       |       |      |       |
| H(1)  | 8058  | 1568  | 2356 | 59    |
| H(2)  | 7490  | 1990  | 3616 | 65    |
| H(3)  | 5643  | 697   | 4083 | 74    |
| H(4)  | 4380  | -1058 | 3281 | 84    |
| H(5)  | 4927  | -1477 | 2021 | 75    |
| H(12) | 11197 | 3748  | 1550 | 79    |
| H(13) | 9729  | 5623  | 979  | 87    |
| H(14) | 7477  | 5130  | 333  | 84    |
| H(15) | 6615  | 2708  | 240  | 70    |
|       |       |       |      |       |

| H(17A) | 12049 | -247 | 2182 | 125 |
|--------|-------|------|------|-----|
| H(17B) | 11852 | 1376 | 2474 | 125 |
| H(17C) | 12563 | 1087 | 1700 | 125 |

VIII. <sup>1</sup>H and <sup>13</sup>C NMR Spectral Copies

![](_page_34_Figure_0.jpeg)

![](_page_35_Figure_0.jpeg)

![](_page_35_Figure_1.jpeg)



















































































































































SI-97

























SI-107










































































