Supporting information

The effect of graphitization degree of carbonaceous material on the electrochemical performance for aluminum-ion batteries

Junxiang Wang ^a, Jiguo Tu ^{a,*}, haiping Lei ^a, Hongmin Zhu^{a,b,*}

^a State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, PR China

^b Department of Metallurgy, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 9808579, Japan

*Corresponding Author

E-mail: guo15@126.com (J. Tu), hzhu@material.tohoku.ac.jp (H. Zhu)

Fig. S1. The current response of carbon black cathode at a constant cell voltage of 2.8 V at 850 $^{\circ}$ C in CaCl₂-LiCl salt.

Fig. S2. The enlarged XRD patterns of all samples.

Fig. S3. SEM image and element mapping images of C, O, Ca and Cl of G2 sample with EDX element analysis.

Fig. S4. (a) Nitrogen adsorption (closed symbol)-desorption (open symbol) isotherms of the G5 sample. (b) The pore size distribution curves of the G5 sample.

Fig. S5. (a) CV curves at various scan rates of G5 cathode. (b) Plots of $v^{1/2} vs$. I/ $v^{1/2}$ at different potentials. (c) The capacitive and diffusion-controlled contributions at a scan rate of 0.2 mV s⁻¹. (d) Contribution ratio of the capacitive and diffusion-controlled at different scan rates.

Fig. S6. The charge-discharge curves for different cycles of G5 electrode at a higher current density of 500 mA g^{-1} .

Samples No.	Conditions	I_D/I_G	g (%)
СВ	Carbon black	1.054	-103.804
G1	800 °C -2.6V-2h	0.324	16.165
G2	800 °C -2.8V-2h	0.223	19.477
G3	850 °C -2.8V-0.5h	0.118	23.084
G4	850 °C -2.8V-1h	0.117	35.057
G5	850 °C -2.8V-2h	0.112	46.067

Table S1. The calculated I_D/I_G and graphitization degree of carbon black before and after cathodic electrolysis under different conditions.

Element	Weight/%	Atom/%
С	90.53	92.76
0	9.36	7.20
Ca	0.05	0.01
Cl	0.07	0.02
Total	100.00	100.00

Table S2. EDX element analysis results of G2 sample.

Cathode	Electrolyte	Discharge capacity (mAh g ⁻¹)		Cycle	Current density	Ref.
materials	-	1 st cycle	Last cycle	- number	(mA g ⁻¹)	
Graphite	AlCl3:[EMIm]Cl	66 5	66.3	100	100	This
nanoflakes	(1.3:1)	00.5				work
Polypyrrol	AlCl3:[EMIm]Cl	71 49	100	20	1	
e	(1.5:1)	/1	48	100	20	1
Carbon	AlCl ₃ :[EMIm]Cl	50 (27	50	150	2	
paper	(1.3:1)	30	02.7	30	150	Z
Pyrolytic	AlCl3:[EMIm]Cl	60	(0) (6	200	66	3
graphite	(1.3:1)	00	00			
Ni ₃ S ₂ Al	AlCl3:[EMIm]Cl	350	60	100	100	4
	(1.3:1)					
Pyrolytic	AlCl3:[EMIm]Cl	62	72	2000	75	5
graphite	(1.5:1)	02	12			

Table S3. Comparative electrochemical performance of graphite nanoflakes with other cathode materials recently reported.

Reference:

[1] N. S. Hudak, J. Phys. Chem. C, 2014, 118, 5203-5215.

[2] H. Sun, W. Wang, Z. Yu, Y. Yuan, S. Wang, and S. Jiao, *Chem. Commun.*, 2015, 51, 11892-11895.

[3] M. C. Lin, M. Gong, B. Lu, Y. Wu, D. Y. Wang, M. Guan, M. Angell, C. Chen, J.Yang, B. J. Hwang and H. Dai, *Nature*, 2015, **520**, 325-328.

[4] S. Wang, Z. Yu, J. Tu, J. Wang, D. Tian, Y. Liu, and S. Jiao, *Adv.Mater.*, 2016, 6, 1606137.

[5] G. A. Elia, I. Hasa, G. Greco, T. Diemant, K. Marquardt, K. Hoeppner, R. J. Behm,

A. Hoell, S. Passerini and R. Hahn, J. Mater. Chem. A, 2017, 5, 9682-9690.