Supporting information

Insights into Rutile/Brookite Homojunction of Titanium Dioxide: Separated Reactive Sites and Boosted Photocatalytic Activity

Jing Chen,^a Meili Guan*^b, Xuan Zhang ^b and Xuezhong Gong^c

^aSchool of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei 230601, P. R. China
^bSchool of Material Science & Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China
^cCollege of Materials Science and Engineering, National Base of International S. & T. Cooperation on Hybrid Materials and Growing Base for State Key Laboratory, Qingdao University, 308 Ningxia Road, Qingdao, 266071, PR China

Corresponding author:

Correspondence and requests for materials should be addressed to: <u>mlguan@ujs.edu.cn</u>

Supplementary Figures

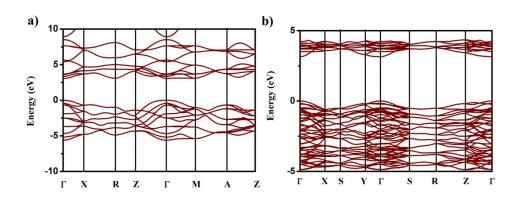


Fig. S1. Results of density of states (DOS) calcultions for (a) rutile and (b) brookite TiO_2 by CASTEP.

Samples	$S_{BET} (m^2/g)$	BJH pore diameter (nm)
Rutile TiO2	61	19
Rutile/Brookite TiO2	59	26
Brookite TiO2	101	16

Table S1. Summary of surface area according to Brunauer-Emmett-Teller (BET) analysis