Synthesis, Structure, Magnetism and Photocatalysis of α-Fe₂O₃ Nanosnowflakes *

Fang Wang,^a Le Xin Song,^{*a,b}, Yue Teng,^c Juan Xia,^d Zhe Yuan Xu^a and Wei Ping Wang^a

^a Department of Chemistry, University of Science and Technology of China, Jinzhai Road 96, Hefei 230026, P. R. China ⁵ E-mail: solexin@ustc.edu.cn; Fax: +86-551-63601592;

^b National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China

^c State Grid Anhui Electric Power Research Institute, Ziyun Road 299, Hefei 230601, P. R. China

^d Department of Chemistry, Fuyang Normal University, QingHe Road 100, Fuyang 236037, P. R. China

10

A list of the contents for all the Supporting Information

Pages Contents 1 A table of contents 2 Figure S1. (a) The average diameter size distribution of the

- Figure S1. (a) The average diameter size distribution of the compelete nanosnowflakes; (b) the average width
 size distribution of the petals.
- Figure S2. The SEM images and XRD patterns of the α -Fe₂O₃ samples obtained by a hydrothermal process of a) PVP/PF-3, b) -4 and c) -6 at 393 K for 6 h.
- **Figure S3.** (a) The XRD and (b) the FE-SEM of the α -Fe₂O₃ crystal with a branched dendritic-like nanostructure obtained from the hydrothermal process of the PVP/PF-0.

Figure S4. The fractional mass loss per second $(v, \% \cdot s^{-1})$ as a function of temperature for PF and PVP/PF-5 at heating rate of 10 K·min⁻¹.

⁷ **Figure S5.** The SEM images and XRD patterns of the α-Fe₂O₃ samples obtained by a hydrothermal process of PVP/PF-5 for 6 h. at : a) 373, b) 413 and c) 433 K.

- **Figure S6.** The SEM images of the α -Fe₂O₃ samples obtained by a hydrothermal process of PVP/PF-5 at 393 K for a) 3, b) 4, c) 5 and d) 7 h.
- Figure S7. The field dependence of magnetization at 5 and 300 K of the α-Fe₂O₃-2.
 Figure S8. The absorption spectra of the mixed dyes (MO and CV) solutions on the α-Fe₂O₃-1 in the

10 presence of H_2O_2 with different illumination times: $0 \sim 80$ min. 20 mg of the α -Fe₂O₃-1 was added to a

- solution of the mixed dyes (40 mL MO and 40 mL CV, 10 mg \cdot L⁻¹).
- **Figure S9.** The room temperature UV/Vis DRS (a) and plots of $(Ahv)^2 vs hv$ (b) of the α -Fe₂O₃-1 and -2.
- Figure S10. The absorption spectra of R6G on the α -Fe₂O₃-1 in the absence of H₂O₂ with different illumination times: 0~80 min.

15

Figure S1. (a) The average diameter size distribution of the compelete nanosnowflakes; (b) the average width size distribution of the petals.

Figure S2. The SEM images and XRD patterns of the α -Fe₂O₃ samples obtained by a hydrothermal process of a) PVP/PF-3, b) -4 and c) -6 at 393 K for 6 h.

Figure S3. (a) The XRD pattern and (b) FE-SEM of the α -Fe₂O₃-2 crystal with a branched dendriticlike nanostructure obtained from the hydrothermal process of the PVP/PF-0.

10

Figure S4. The fractional mass loss per second (v, $\% \cdot s^{-1}$) as a function of temperature for (a) PF and (b) PVP/PF-5 at heating rate of 10 K $\cdot min^{-1}$.

Figure S5. The SEM images and XRD patterns of the α -Fe₂O₃ samples obtained by a hydrothermal process of PVP/PF-5 for 6 h at a) 373, b) 413 and c) 433 K.

Figure S6. The SEM images of the α -Fe₂O₃ samples obtained by a hydrothermal process of PVP/PF-5 at 393 K for a) 3, b) 4, c) 5 and d) 7 h.

Figure S7. The field dependence of magnetization at 5 and 300 K of the α -Fe₂O₃-2.

Figure S8. The absorption spectra of the mixed dyes (MO and CV) solutions on the α -Fe₂O₃-1 in the presence of H₂O₂ with different illumination times: 0~80 min. 20 mg of the α -Fe₂O₃-1 was added to a solution of the mixed dyes (40 mL MO and 40 mL CV, 10 mg·L⁻¹).

Figure S9. The room temperature UV/Vis DRS (a) and plots of $(Ahv)^2 vs hv$ (b) of the α -Fe₂O₃-1 and -2.

Figure S10. The absorption spectra of R6G on the α -Fe₂O₃-1 in the absence of H₂O₂ with different illumination times: $0 \sim 80$ min.