Supporting Information

Iron-Catalysed Allylation-Hydrogenation Sequences as Masked Alkyl-Alkyl Cross-Couplings

Josef Bernauer, Guojiao Wu, and Axel Jacobi von Wangelin

1	General	2
2	Preparation of Starting Materials	4
	Preparation of Allylic Alcohols - Procedure 1	4
	Preparation of Allylic Alcohols - Procedure 2	8
	Acetylation reactions	10
	Alkenylation Acetylation Reactions	16
	Synthesis of grignard reagents	18
3	Iron-catalysed cross-coupling reactions	20
	Procedures	20
	Optimization experiments with allylacetate	22
	Optimization experiments with alkyl-substituted acetates	26
	Optimization experiments with aryl-substituted acetates	28
	Isolated products	29
4	Mechanistic Investigations	45
	External Functional Group Test / Effect of electrophiles	45
	Kinetic Poisoning	47
	Filtration Test	48
	Radical Clock Experiments	48
	Stoichiometric Reduction Experiments	50
	Hydrogenation Poisoning studies	51
R	eferences	52

1 General

<u>Chemicals and Solvents.</u> If not indicated, commercial reagents were used without purification. For catalytic reactions, exclusively dried solvents were used. Liquid substrates were distilled prior to use.THF was dried over sodium/benzophenoneand distilled.All Fe-catalyzed reactions were performed under an atmosphere of dry argon using standard Schlenk and glovebox techniques.

<u>Analytical thin-layer chromatography.</u> TLC was performed using aluminium plates with silica gel and fluorescent indicator (Merck, $60F_{254}$). Thin-layer chromatography plates were visualized by exposure to UV light and/or by immersion in an aqueous staining solution of KMnO₄.

<u>Column chromatography.</u> Flash column chromatography with silica gel 60 Å (220-240 mesh) from *Acros*. Mixtures of pentane with ethyl acetate were used as eluents.

<u>Gas chromatography with mass-selective detector</u>. *Agilent* 6890N Network GC-System, mass detector 5975 MS. Column BPX5 (30m x 0.25 mm x 0.25µm) from *SGE*, carrier gas: H₂. Standard heating procedure: 50°C (2 min), 25°C/min -> 300°C (5 min).

<u>Gas chromatography with FID.</u> Agilent 7820A GC-Systems. Column: HP 5 19091J 413 (30 m x 0.32 mm x 0.25 μ m) from Agilent, carrier gas: N₂. GC-FID was used for catalyst screening (calibration with analytically pure samples vs. internal *n*-pentadecane).

<u>NMR.</u> ¹H and ¹³C nuclear magnetic resonance spectra were recorded on a *Bruker* Avance 300 (300 MHz ¹H; 75 MHz ¹³C) and *Bruker* Avance 400 (400 MHz ¹H, 101 MHz ¹³C) spectrometers. Chemicals shifts are reported in ppm (δ) relative to internal tetramethylsilane (TMS). Coupling constants (*J*) are reported in Hertz (Hz).

<u>High resolution mass spectrometry (HRMS).</u> The spectra were recorded by the Central Analytics Lab at the Department of Chemistry, University of Regensburg.

2 Preparation of Starting Materials

Preparation of Allylic Alcohols - Procedure 1

R = OMe, Me, CI

Representative procedure on the example of 4-methoxy cinnamyl alcohol:

1) Chlorotrimethylsilane (TMSCI, 33 mmol, 4.2 mL) was added to a solution of 4-methoxycinnamic acid (15 mmol, 2.67 g) in 75 ml of ethanol. The solution was stirred at room temperature for 48 hours. The solvent was then removed under reduced pressure.

2) 13.5 ml of a 1.0 M diisobutylaluminum hydride (DIBAL-H) solution in toluene was added dropwise at -78 °C to a solution of 4-methoxy ethyl cinnamate (6 mmol, 1.24 g) in toluene (18 mL) over 45 minutes. The reaction was stirred at room temperature for 12 hours before gently hydrolyzing with ice-cooled 1.0 M aqueous HCl solution (15 mL). The aqueous phase was extracted with Et_2O and the combined organic phases were then dried over NaSO₄. After filtering off the drying agent, the solvent was distilled off under reduced pressure. No further purification was required.¹

4-methoxyethyl cinnamate

C₁₂H₁₄O₃ 206.24 g/mol

Yield	3.07 g, 14.9 mmol, 99%
¹ H-NMR	$(300 \text{ MHz}, \text{CDCI}_3) \delta_{\text{H}} \text{[ppm]} = 7.64 \text{ (d, } J = 16.0 \text{ Hz}, 1\text{H}), 7.54 - 7.43 \text{ (m, 2H)}, 6.96 - 6.82 \text{ (m, 2H)}, 6.31 \text{ (d, } J = 16.0 \text{ Hz}, 1\text{H}), 4.25 \text{ (q, } J = 7.1 \text{ Hz}, 2\text{H}), 3.84 \text{ (s, 3H)}, 1.33 \text{ (t, } J = 7.1 \text{ Hz}, 3\text{H}).$
¹³ C-NMR	(75 MHz, CDCl ₃) δ_{C} [ppm] = 167.4, 161.3, 144.3, 129.7, 127.2, 115.7, 114.3, 60.4, 55.4, 14.4.
GC-MS	(EI, 70 eV, m/z): 206 [M] ⁺ , 194, 181, 161, 149, 136, 121, 110, 78, 69, 51.

The data corresponds to the literature values.²

4-methoxy cinnamyl alcohol

 $C_{10}H_{12}O_2$ 164.20 g/mol

Yield	879 mg, 5.4 mmol, 89%
¹ H-NMR	(400 MHz, CDCl ₃) δ_{H} [ppm] = 7.36 - 7.29 (m, 2H), 6.90 - 6.81 (m, 2H), 6.56 (d, <i>J</i> = 15.9 Hz, 1H), 6.24 (dt, <i>J</i> = 15.9, 6.0 Hz, 1H), 4.30 (d, <i>J</i> = 5.6 Hz, 2H), 3.81 (s, 3H).
¹³ C-NMR	(101 MHz, CDCl ₃) δ_{C} [ppm] = 159.4, 131.0, 129.4, 127.7, 126.3, 114.0, 64.0, 55.3.

4-chloroethyl cinnamate

C₁₁H₁₁ClO₂ 210.66 g/mol

Yield 3.15 g, 15 mmol, 100%

¹**H-NMR** (300 MHz, CDCl₃) δ_{H} [ppm] = 7.63 (d, *J* = 16.0 Hz, 1H), 7.51 - 7.29 (m, 4H), 6.40 (d, *J* = 16.0 Hz, 1H), 4.26 (q, *J* = 7.1 Hz, 2H), 1.33 (t, *J* = 7.1 Hz, 3H).

¹³**C-NMR** (75 MHz, CDCl₃) δ_{C} [ppm] = 166.8, 143.2, 136.1, 133.0, 129.2, 129.2, 118.9, 60.7, 14.3.

GC-MS (EI, 70 eV, m/z): 210 [M]⁺, 182, 165, 138, 102, 75, 63, 50. The data corresponds to the literature values.²

4-chloro cinnamyl alcohol

C₉H₉CIO 168.62 g/mol

Yield 877 mg, 5.2 mmol, 87%

¹**H-NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ [ppm] = 7.39-7.26 (m, 4H), 6.58 (d, J = 15.9 Hz, 1H), 6.34 (dt, J = 15.9, 5.6 Hz, 1H), 4.33 (dd, J = 5.6, 1.5 Hz, 2H).

¹³**C-NMR** (101 MHz, CDCl₃) δ_{C} [ppm] = 135.2, 133.3, 129.8, 129.2, 128.8, 127.7, 63.6.

GC-MS (EI, 70 eV, m/z): 168 [M]⁺, 151, 122, 115, 91, 61.

The data corresponds to the literature values.³

4-methyl ethyl cinnamate

 $C_{12}H_{14}O_2$ 190.24 g/mol

Yield 2.86 g, 15 mmol, 100%

¹**H-NMR** (300 MHz, CDCl₃) δ_{H} [ppm] = 7.66 (d, *J* = 16.0 Hz, 1H), 7.42 (d, *J* = 8.2 Hz, 2H), 7.19 (d, *J* = 8.0 Hz, 2H), 6.39 (d, *J* = 16.0 Hz, 1H), 4.26 (q, *J* = 7.1 Hz, 2H), 2.37 (s, 3H), 1.34 (t, *J* = 7.1 Hz, 3H).

¹³**C-NMR** (75 MHz, CDCl₃) δ_{C} [ppm] = 167.3, 144.6, 140.7, 131.7, 129.6, 128.1, 117.2, 60.4, 21.5, 14.4.

GC-MS (EI, 70 eV, m/z): 190 [M]⁺, 172, 162, 145, 132, 115, 103, 91, 76, 63, 51.

The data corresponds to the literature values.²

4-methyl cinnamyl alcohol

C₁₀H₁₂O 148.21 g/mol

Yield 629 mg, 4.2 mmol, 71%

¹**H-NMR** (400 MHz, CDCl₃) δ_{H} [ppm] = 7.29 (d, J = 8.1 Hz, 2H), 7.13 (d, J = 7.9 Hz, 2H), 6.59 (d, J = 15.9 Hz, 1H), 6.32 (dt, J = 15.9, 5.9 Hz, 1H), 4.31 (dd, J = 5.8, 1.3 Hz, 2H), 2.34 (s, J = 8.0 Hz, 3H).

¹³**C-NMR** (101 MHz, CDCl₃) δ_{C} [ppm] = 137.6, 133.9, 131.3, 129.3, 127.4, 126.4, 63.9, 21.2.

GC-MS (EI, 70 eV, m/z): 148 [M]⁺, 131, 105, 71, 55.

The data corresponds to the literature values.³

Preparation of Allylic Alcohols - Procedure 2

Under inert gas atmosphere (N₂), lithiumaluminum hydride (34 mmol, 1.29 g) was charged in 40 mL of absolute Et_2O . Tiglic acid (15 mmol, 1.5 g) was dissolved in 20 mL of absolute Et2O and added dropwise over a period of 2 hours with the aid of a dropping funnel. The suspension was stirred for 24 hours at room temperature and then carefully hydrolyzed with ice water and 15% aqueous NaOH solution (2 mL each). After addition of another 25 mL of ice water, the reaction mixture was filtered and the aqueous phase was extracted with Et_2O . The collected organic phases were dried over NaSO₄. The drying agent was filtered off and the solvent was carefully removed at 50 °C at ambient pressure. The product was purified by distillation at 60 °C at 20 mbar.⁴

(E)-2-methylbut-2-en-1-ol

C₅H₁₀O 86.13 g/mol

Yield 586 mg, 6.8 mmol, 45%

- ¹**H-NMR** (300 MHz, CDCl₃) δ_{H} [ppm] = 5.58 5.39 (m, 1H), 3.98 (d, J = 5.9 Hz, 2H), 1.65 (d, J = 1.0 Hz, 3H), 1.61 (ddd, J = 6.7, 2.1, 1.0 Hz, 4H).
- ¹³**C-NMR** (101 MHz, CDCl₃) $\delta_{\rm C}$ [ppm] = 135.5, 120.7, 69.1, 13.4, 13.1.

GC-HRMS (CI, m/z): found 86.07269 [M]⁺ (calculated 86.07262).

The data corresponds to the literature values.⁴

Acetylation reactions

Procedure A

 $\bigcirc OH + \bigcirc CI \\ 1.4 \text{ equiv. NEt}_3 \\ \bigcirc OAc \\ CH_2CI_2, 0-40 \text{ °C, } 12 \text{ h} \\ \bigcirc OAc \\ OAc \\ \bigcirc OAc \\ \bigcirc OAc \\ OAc$

<u>Representative procedure on the example of Crotylacetate</u>: Crotyl alcohol (50 mmol, 3.6 g) and triethylamine (70 mmol, 9.0 mL) were dissolved in dichloromethane (25 mL) in a dry three-necked flask. The solution was cooled to 0 °C and acetyl chloride (70 mmol, 4.6 mL) in 25 mL dichloromethane was slowly added dropwise via a dropping funnel. The mixture was subsequently heated under reflux for 12 hours and, after cooling to room temperature, the precipitate formed was filtered off. The yellow solution was washed with saturated NaHCO₃ solution and with distilled water. The organic phase was dried over NaSO₄. After filtering off the drying agent, the solvent was carefully distilled off under reduced pressure (500 mbar). Product purification was carried out by distillation at 80 °C under a pressure of 20 mbar.⁵

Procedure B

<u>Representative procedure on the example of 4-methoxycinnamylacetate:</u> 4-methoxycinnamyl alcohol (4 mmol, 657 mg), triethylamine (16 mmol, 2.2 ml) and 4-(dimethylamino)-pyridine (DMAP) (0.4 mmol, 49 mg) were dissolved in absolute Et_2O (20 mL). The solution was cooled to 0 °C. and acetic anhydride (16 mmol, 1.5 mL) was added dropwise. The mixture was stirred at room temperature for 24 hours. The reaction solution was then washed with saturated NaHCO₃ solution, 10% aqueous NaOH solution and saturated NaCl solution, and the organic phase was dried over NaSO₄. After filtering off the drying agent, the solvent was distilled off under reduced pressure. The crude product was purified by flash chromatography when necessary.⁶

Crotyl acetate

Synthesized according to procedure A.

JAC JAC

C₆H₁₀O₂ 114.14 g/mol

Yield 1.92 g, 16.8 mmol, 34%

¹**H-NMR** (300 MHz, CDCl₃) δ_{H} [ppm] = 5.80 (dq, *J* = 12.8, 6.4 Hz, 1H), 5.59 (dtd, *J* = 8.1, 6.5, 1.5 Hz, 1H), 4.49 (d, *J* = 6.5 Hz, 2H), 2.06 (s, 3H), 1.72 (dd, *J* = 6.4, 1.0 Hz, 3H).

- ¹³**C-NMR** (101 MHz, CDCl₃) δ_{C} [ppm] = 170.9, 131.5, 125.1, 65.2, 21.0, 17.8.
- **GC-HRMS** (CI, m/z): found 114.0667 [M]⁺ (calculated 114.0681).

The data corresponds to the literature values.⁷

(E)-non-2-en-1-yl acetate

Synthesized according to procedure A.

 $C_{11}H_{20}O_2$ 184.15 g/mol

¹ H-NMR	(300 MHz, Chloroform-d) δ 5.77 (dtt, J = 15.5, 6.6, 1.1 Hz, 1H), 5.55 (dtt, J = 15.5, 6.5, 1.4 Hz, 1H), 4.50 (dt, J = 6.5, 1.1 Hz, 2H),
¹³ C-NMR	2.06 (d, J = 1.8 Hz, 5H), 1.49 – 1.17 (m, 8H), 0.96 – 0.78 (m, 3H). (75 MHz, CDCl3) δ 170.94, 136.82, 123.62, 65.39, 32.28, 31.68, 28.85, 22.61, 21.09, 14.10.
GC-HRMS	(EI, 70 eV m/z): found 184.14653 [M]** (calculated 184.14578).

4-methoxycinnamyl acetate

Synthesized according to procedure B.

C₁₂H₁₄O₃ 206.24 g/mol

Yield 644 mg, 3.1 mmol, 78%

¹**H-NMR** (400 MHz, CDCl₃) δ_{H} [ppm] = 7.39 - 7.30 (m, 2H), 6.92 - 6.79 (m, 2H), 6.60 (d, *J* = 15.9 Hz, 1H), 6.15 (dt, *J* = 15.8, 6.6 Hz, 1H), 4.70 (dd, *J* = 6.6, 1.1 Hz, 2H), 3.81 (s, 3H), 2.09 (s, 3H).

¹³**C-NMR** (101 MHz, CDCl₃) δ_{C} [ppm] = 170.9, 159.6, 134.1, 129.0, 127.9, 120.9, 114.0, 65.4, 55.3, 21.1.

GC-MS (EI, 70 eV, m/z): 206 [M]⁺, 163, 147, 135, 115, 103, 91, 78, 63, 51. The data corresponds to the literature values.⁸

4-chlorocinnamyl acetate

Synthesized according to procedure B.

 $C_{11}H_{11}CIO_2$ 210.66 g/mol

Yield 608 mg, 2.9 mmol, 73%

- ¹**H-NMR** (400 MHz, CDCl₃) δ_{H} [ppm] = 7.34 7.27 (m, 4H), 6.60 (d, J = 15.9 Hz, 1H), 6.26 (dt, J = 15.9, 6.4 Hz, 1H), 4.72 (dd, J = 6.4, 1.2 Hz, 2H), 2.10 (s, 3H).
- ¹³**C-NMR** (101 MHz, CDCl₃) δ_{C} [ppm] = 170.8, 134.7, 133.8, 132.9, 128.8, 127.8, 123.9, 64.9, 21.0.

GC-MS (EI, 70 eV, m/z): 210 [M]⁺, 168, 151, 133, 115, 103, 89, 77, 63, 51. The data corresponds to the literature values.⁸

4-methylcinnamyl acetate

Synthesized according to procedure B.

 $C_{12}H_{14}O_2$ 190.24 g/mol

Yield 613 mg, 3.2 mmol, 81%

¹**H-NMR** (400 MHz, CDCl₃) δ_{H} [ppm] = 7.29 (d, J = 8.1 Hz, 2H), 7.13 (d, J = 7.9 Hz, 2H), 6.62 (d, J = 15.9 Hz, 1H), 6.24 (dt, J = 15.8, 6.5 Hz, 1H), 4.72 (dd, J = 6.5, 1.1 Hz, 2H), 2.34 (s, 3H), 2.10 (s, 3H).

¹³**C-NMR** (101 MHz, CDCl₃) δ_{C} [ppm] = 170.9, 138.0, 134.3, 133.4, 129.3, 126.6, 122.1, 65.3, 21.2, 21.0.

GC-MS (EI, 70 eV, m/z): 190 [M]⁺, 148, 131, 115, 103, 91, 77, 65, 51. The data corresponds to the literature values.⁸

2-methylbut-3-en-2-yl acetate

Synthesized according to procedure B.

 $C_7H_{12}O_2$ 128.17 g/mol

Yield 548 mg, 4.3 mmol, 22%

¹ H-NMR	(400 MHz, CDCl ₃) $\delta_{\rm H}$ [ppm] = 6.07 (dd, J = 17.5, 10.9 Hz, 1H), 5.16
	(d, J = 17.5 Hz, 1H), 5.06 (dd, J = 10.9, 0.5 Hz, 1H), 1.98 (s, 3H),
	1.51 (s, 6H).

¹³**C-NMR** (101 MHz, CDCl₃) δ_{C} [ppm] = 170.1, 142.6, 112.6, 80.6, 29.4, 26.5, 22.3.

GC-HRMS (CI, m/z): found 128.0795 $[M]^+$ (calculated 128.0788). The data corresponds to the literature values.⁶

(E)-2-methylbut-2-en-1-ylacetate

Synthesized according to procedure B.

C₇H₁₂O₂ 128.17 g/mol

Yield	344 mg, 2.7 mmol, 67%
¹ H-NMR	(400 MHz, CDCl ₃) δ_{H} [ppm] = 5.64 - 5.45 (m, 1H), 4.45 (s, 2H), 2.07 (s, 3H), 1.73 - 1.55 (m, 6H).
¹³ C-NMR	(101 MHz, CDCl ₃) δ_{C} [ppm] = 171.1, 130.8, 124.2, 70.4, 21.0, 13.6, 13.3.
GC-HRMS	R _t = 4.49 min (CI, m/z): found 129.0909 [M+H] ⁺ (calculated 129.0910).

The data corresponds to the literature values.9

Cyclohex-2-en-1-yl acetate

Synthesized according to procedure B.

C₈H₁₂O₂ 140.18 g/mol

Yield 1.20 g, 8.6 mmol, 57%

¹ H-NMR	(300 MHz, Chloroform-d) δ 5.95 (dtd, J = 10.1, 3.7, 1.3 Hz, 1H),
	5.70 (ddt, J = 10.1, 4.0, 2.2 Hz, 1H), 5.25 (tdq, J = 5.6, 3.5, 2.0 Hz,
	1H), 2.22 – 1.75 (m, 6H), 1.75 – 1.53 (m, 3H).

¹³C-NMR (75 MHz, CDCl3) δ 170.79, 132.71, 125.66, 68.08, 28.28, 24.86, 21.45, 18.85.

GC-MS $R_t = 5.22 \text{ min}$ (EI, 70 eV, m/z): 140 [M]⁺, 98, 79, 77, 70, 65, 53, 51.

The data corresponds to the literature values.⁷

Alkenylation-Acetylation Reactions

General procedures:

Alkenylation: To a solution of the ketone (10 mmol, 1 equiv.) in THF (20 mL) was added vinylmagnesium bromide (1.0 M in THF, 12 mmol, 1.2 equiv.) under nitrogen at 0 °C and the reaction was stirred for 20 minutes. The reaction was then quenched with a saturated aqueous NH_4CI solution and extracted with diethyl ether. The combined organic layers were washed with brine, dried over sodium sulfate, filtered and evaporated to give the crude allylic alcohol that was engaged in the next step without further purification.

Acylation: The acylation of allylic alcohols was carried out using microwaveassisted heating conditions described as follow. The allylic alcohol (10 mmol, 1 equiv.), Et_3N (5.6 mL, 40 mmol, 4 equiv.), Ac_2O (1.8 mL, 20 mmol, 2 equiv.) and DMAP (0.360 g, 3.0 mmol, 0.3 equiv), were added in turn in a microwave-designed vial. The reaction mixture was heated under microwave-assisted heating at 100 °C for 12 min. The reaction was then quenched with a saturated aqueous NH_4CI solution and extracted with diethyl ether. The combined organic layers were washed with brine, dried over sodium sulfate, filtered and evaporated to give a crude product that was purified by flash chromatography on silica gel.

1-vinylcyclohexyl acetate

OAc

C₁₀H₁₆O₂ 168.24 g/mol

Yield

350 mg, 2.1 mmol, 27%

¹ H-NMR	$(300 \text{ MHz}, \text{ Chloroform-d}) \delta 6.10 \text{ (dd, J = 17.7, 11.0 Hz, 1H), 5.22}$
	= 5.07 (III, 2H), 2.17 (q, $3 = 0.5, 0.1$ Hz, 2H), 2.02 (S, 3H), 1.05 = 1.39 (m, 6H), 1.35 – 1.20 (m, 2H).
¹³ C-NMR	(75 MHz, CDCl3) δ 169.94, 141.97, 113.54, 81.78, 34.88, 25.37, 22.17, 21.88.
GC-MS	R _t = 4.70 min

(EI, 70 eV, m/z): 126 [M-Ac]⁺, 111, 108, 93, 91, 83, 79, 77, 55.

The data corresponds to the literature values.¹⁰

1-phenylallyl acetate

OAc Ph

C₁₁H₁₂O₂ 176.22 g/mol

Yield 1.41 g, 8.0 mmol, 89%

¹H-NMR (300 MHz, Chloroform-d) δ 7.44 – 7.24 (m, 5H), 6.27 (dt, J = 5.9, 1.4 Hz, 1H), 6.01 (ddd, J = 17.1, 10.4, 5.9 Hz, 1H), 5.37 – 5.20 (m, 2H), 2.12 (s, 3H).

GC-MS $R_t = 6.58 \text{ min}$ (EI, 70 eV, m/z): 176 [M]⁺, 134, 116, 105, 91, 77, 65, 55.

The data corresponds to the literature values.¹⁰

Synthesis of the Grignard reagents

$$R^{X} \xrightarrow{1.25 \text{ equiv. Mg}} R^{MgX}$$
R = Alkyl, Aryl
X = Cl, Br, I

Representative procedure on the example of 1-Bromononane in Et_2O : All reaction steps were carried out under inert gas atmosphere (N₂). 1-Bromononane (40 mmol, 7.6 mL) was added dropwise to a suspension of magnesium turnings (50 mmol, 1.22 g) in Et_2O (30 mL) at room temperature over a period of 1 hour using a syringe pump. The reaction solution was then stirred at room temperature for 12 hours.¹¹

$$R'^{X} \xrightarrow{\begin{array}{c}1.5 \text{ equiv. Mg}\\1.25 \text{ equiv. LiCl}\\\hline\\THF, 0 ^{\circ}C - r.t., 13 \text{ h}\end{array}} R'^{MgX \cdot \text{LiCl}}$$

$$R = Alkyl, Aryl$$

$$X = Cl, Br$$

<u>Representative procedure on the example of 1-Bromononane</u>: All reaction steps were carried out under inert gas atmosphere (N₂). 1-Bromononane (20 mmol, 3.8 mL) was added dropwise to a suspension of magnesium turnings (30 mmol, 0.73 g) and LiCl (25 mmol, 1.06 g) in THF (15 mL) at 0 °C over a period of 1 hour using a syringe pump. The reaction solution was then stirred at room temperature for 12 hours.

$$2 C_9 H_{19} MgBr \longrightarrow MgBr_2 + Mg(C_9 H_{19})_2$$

Et₂O, 0 - 25 °C, 30 min

All reaction steps were carried out in an Argon-filled glovebox. A 1.0 M *n*-nonylmagnesium bromide solution in Et_2O (3 mmol, 3 mL) was added dropwise over a period of 5 minutes to a solution of dry 1,4-dioxane (3.3 mmol, 291 mg) in absolute Et_2O (2 mL) at 0 °C. The mixture was then stirred at room temperature for 30 minutes and the precipitate formed was filtered off by means of a syringe filter. Grignard solutions were titrated with salicylaldehyde phenylhydrazone (0.25 mmol, 53 mg) as indicator in THF (4 mL) to determine their concentration.¹²

3 Iron-catalysed cross-coupling reactions

Procedures

Procedure during optimization

OAc + $C_9H_{19}MgBr$ 1.2 equiv. addition time 10 min 5 mol% Fe(OAc)_2 $Et_2O, 0 °C, 1 h$

A suspension of Fe(OAc)₂ (0.025 mmol, 4.3 mg) in absolute Et₂O (2 mL) was cooled to 0 °C under a nitrogen atmosphere in a flame dried reaction tube. After the addition of freshly distilled allyl acetate (0.5 mmol, 54 μ L), a 1.0 M *n*-nonylmagnesium bromide solution (0.6 mmol, 0.6 mL) in Et₂O was added dropwise over a period of 10 minutes and the mixture was stirred at 0 °C for 1 hour. The reaction mixture was then hydrolyzed with a saturated NH₄Cl solution and the aqueous phase was extracted with EtOAc. Yields were determined by quantitative GC-FID vs. internal *n*-pentadecane.

Protocol A

Representative procedure on the example of 2-methyltridec-2-ene: A suspension of $Fe(OAc)_2$ (0.025 mmol, 4.3 mg) and dry CHCl₃ (0.25 mmol, 20 µl) in absolute Et₂O (2 mL) was cooled to 0 °C under a nitrogen atmosphere in a flame dried reaction tube. After the addition of freshly distilled prenyl acetate (0.5 mmol, 70 µL), a 1.0 M n-nonyl-magnesium bromide solution (0.7 mmol, 0.7 mL) in Et2O was added dropwise over a period of 45 minutes and the mixture was stirred at 0 °C for 1 hour. The reaction mixture was then hydrolyzed with a saturated NH₄Cl solution and the aqueous phase was extracted with EtOAc. The solvent was removed under reduced pressure. Product purification was carried out by kugelrohr distillation at 150 °C at 20 mbar.

Protocol B

<u>Representative procedure on the example of (*E*)-1-phenyldodec-1-ene: A suspension of Fe(acac)₂ (0.025 mmol, 6.4 mg) in absolute Et₂O (2 mL) was cooled to 0 °C under a nitrogen atmosphere in a flame dried reaction tube. After the addition cinnamyl acetate (0.5 mmol, 84 μ L), a 1.0 M *n*-nonylmagnesium bromide solution (0.7 mmol, 0.7 mL) in Et₂O was added dropwise over a period of 10 minutes and the mixture was stirred at 0 °C for 1 hour. The reaction mixture was then hydrolyzed with a saturated NH₄Cl solution and the aqueous phase was extracted with EtOAc. The solvent was removed under reduced pressure. The crude product was purified by column chromatography.</u>

Cross Coupling with subsequent hydrogenation

For Route 1, the isolated product of the coupling reaction was hydrogenated according to literature.¹³ The products were analyzed via GC-MS and GC-FID.

For Route 2, the reaction was carried out according to Condition A (without addition of $CHCI_3$) or B in an autoclave vial. After completion of the reaction, a small sample was taken out for quantitative GC-FID, and the vial was transferred into an argon-filled glovebox. The septum was penetrated with a cannula and the reaction vial was put into an autoclave, which was set under a pressure of 25 bar of H₂. The reaction was stirred overnight and then quenched with aqueous NH₄Cl solution. The organic phase was extracted with ethyl acetate, dried over sodium sulfate and filtered over a short layer of silica. The products were analyzed via GC-MS and GC-FID.

Entry	Change of rea	Yield [%] ^[a]	
1		Fe(OAc) ₂ (99.99%)	73
2		Pd(OAc) ₂	Traces
3	Motel Presureer	Pd(PPh ₃) ₄	Traces
4	Metal Frecuisoi	Co(OAc) ₂	Traces
5		NiBr ₂	Traces
6		CuBr	78 (<5 ^[b])
7		none	0
8		FeCl ₂	58
9		FeCl₃	61
10		FeBr ₂	66
11	Iron Procuracy	Fel ₂ x 2 THF	51
12	ITOIT Precursor	Fe(OAc) ₂	71
13		Fe(acac) ₂	66
14		Fe(acac) ₃	59
15		Fe(N(TMS) ₂) ₂	45
16		Fe(OTf) ₃	48
17		1	62
18		3	54
19		5	71
20	1 – 15 mol% Fe(OAc) ₂	8	72
21		10	78
22		12	77
23		15	78
24		Heptane	4
25		Et ₂ O	71
26		Et ₂ O/NMP (20/1)	20
27		Toluene	41
28	Solvent	Et ₂ O/Toluene (3/1)	70
29		Et ₂ O/Toluene (1/1)	71
30		Et ₂ O/Toluene (1/3)	70
31		EtOAc	63
32		DME	44

33		MTBE	55
34		0.5	75 ^[c]
35	Grignard concentration [M]	1.0	78 ^[c]
36		2.0	78 ^[c]
37		-20	30 ^[c]
38	Temperature [°C]	-10	66 ^[c]
39		0	78 ^[c]
40		25	73 ^[c]
41		12.5 mol% dppp	0[c]
42		25 mol% IPr·HCl	52 ^[c]
43		25 mol% NEt ₃	61 ^[c]
44	Additives	12.5 mol% TMEDA	62 ^[c]
45		12.5 mol% DABCO	62 ^[c]
46		12.5 mol% CH ₂ Cl ₂	55 ^[c]
47		12.5 mol% Glucosamin·HCl	70 ^[c]

^[a] Yields were determined by quantitative GC-FID vs. internal *n*-pentadecane. ^[b] 0.01 mol% CuBr ^[c] 10 mol% Fe(OAc)₂.

IPr• HCl

Influence of the Schlenck equilibrium

/~~ ⁽	— DAc + R-Mg-X — El	5 mol% Fe(OAc) ₂ 20, 0 °C, 1 h	^R + R - R +		
	$R = n-C_9H_{19}$, @solvent 1.2 equiv. over 10 min	1	2	3	
Entry	X	Solvent (RMgX)	1 [%]	2 [%]	3 [%]
1	CI	Et ₂ O	0	<1	52
2	CI	THF	37	12	11
3	CI·LiCI	THF	54	5	2
4	Br	Et ₂ O	76	11	<1
5	Br	THF	69	6	2
6	Br·LiCl	THF	77	5	2
7	I	Et ₂ O	32	35	0
8	<i>n</i> -C ₉ H ₁₉	Dioxane	1	<1	48

Application of ArMgBr

Entry	Change of reaction conditions		ArMgBr	Yield [%] ^[a]
1		None		0
2		FeCl ₂	∧ MaBr	80
3		FeBr ₂		66
4		Fe(OAc) ₂	MeO	52
5	Iron Precursor	Fe(acac) ₂	in THF	83
6		Fe(OTf) ₃		65
7		FeBr ₂	MgBr	52 ^[b]
8		Fe(OAc) ₂		17 ^[b]
9		Fe(acac) ₂	in Et ₂ O	65 ^[b]
10		THF	MaDa	83
11		THF/NMP (20/1)	INIGER	74
12		Et ₂ O	MeO	81
13		Toluol	in THF	82
14	Solvent	Benzol	(not soluble in Et_2O)	68 ^[c]
15		Et ₂ O	MgBr	55
16		THF		55
17		Et ₂ O	MgBr	65
18		THF	in Et ₂ O	61
19		-10	MgBr	79
20	Temperature [°C]	0		83
21		25	MeO → in THF	44
22		6.25 mol% dppp		62
23		12.5 mol% IPr·HCI	∧ MaBr	78
24		12.5 mol% NEt ₃		80
25	Additives	6.25 mol% TMEDA	MeO	77
26		30 mol% CH ₂ Cl ₂	in THF	74
27		6.25 mol% Glucosamin·HCl		40

^[a] Yields were determined by quantitative GC-FID vs. internal *n*-pentadecane. ^[b] Reaction was run in Et_2O . ^[c] Reaction temperature 25 °C.

Optimization experiments with alkyl-substituted acetates

OAc	Ŧ	CH MaBr —	10 mol% Fe(OAc) ₂	C ₉ H ₁₉
ſ	add	1.2 equiv. lition time 10 min	Et ₂ O, 0 °C, 1 h	ľ

Entry	Change of reaction conditions		Conversion [%] ^[a]	Yield [%] ^[a]
1		Fe(OAc) ₂	89	15
2		Fe(acac) ₂	84	3
3	Iron Precursor	FeCl ₂	76	9
4		FeBr ₂	76	1
5		Fe(OTf) ₃	76	3
6		25 mol% IPr·HCl	73	3
7		25 mol% NEt ₃	81	14
8		12.5 mol% TMEDA	84	5
9	Additives	12.5 mol% DABCO	82	7
10		12.5 mol% CH ₂ Cl ₂	81	21
11		12.5 mol% CHCl ₃	83	38
12		12.5 mol% Glucosamin·HCl	100	11
13		iPr ₂ O	69	32
14		Bu ₂ O	65	17
15		CPME	83	48
16	Solvents	2-Methyl-THF	32	13
17		Dioxane	57	<1
18		Dioxolane	13	<1
19		TEGDME	18	2

^[a] Yields were determined by quantitative GC-FID vs. internal *n*-pentadecane.

\sim	,OAc	12 MarDa	2.5-200 mol% CHCl ₃ 10 mol% Fe(OAc) ₂	C ₉ H ₁₉
ľ	+ C ₉ H ₁₉ 1.2-1.7 addition ti	₀MgBr 5 equiv. me 10 min	Et₂O, 0 °C, 1 h	
Entry	CHCl₃ [mol%]	equiv. C₃H₁₃MgBr	Conversion[%] ^[a]	Yield [%] ^[a]
1	0	1.2	89	12
2	0	1.35	90	12
3	10.5	1.2	83	38
4	12.5	1.35	93	34
5		1.2	85	38
6	25	1.35	100	42
7		1.5	90	39
8		1.2	80	41
9	50	1.35	89	46 (42 ^[b] , 43 ^[c])
10	50	1.5	93	50
11		1.75	99	53
12		1.2	79	41
13	100	1.35	77	41
14	100	1.5	80	42
15		1.75	90	54
16		1.2	68	40
17	200	1.35	75	41
18	200	1.5	74	43
19		1.75	76	48

^[a] Yields were determined by quantitative GC-FID vs. internal *n*-pentadecane. ^[b] Grignard concentration 0.5 M. ^[c] Grignard concentration 2.0 M.

To remain in a reasonable amount of required chloroform and Grignard reagent, the reaction conditions were chosen to be 1.4 equiv. of the organomagnesiumbromide and 50 mol% $CHCI_{3}$.

\checkmark		50 mol% CHCl ₃ 10 mol% Fe(OAc) ₂	C ₉ H ₁₉
	+ C ₉ Π ₁₉ MgBr 1.4 equiv. addition time 5-360 ι	Et ₂ O, 0 °C, 1 h min	
Entry	Addition time [min]	Conversion[%] ^[a]	Yield [%] ^[a]
1	5	68	22
2	10	89 (89 ^[b])	45 (15 ^[b])
3	20	84	52
4	30	100	50
5	45	99 (100 ^[b])	64 (35 ^[b])
6	60	94 (89 ^[b])	61(31 ^[b])
7	180	100 ^[b]	50 ^[b]
8	360	100 ^[b]	62 ^[b]

^[a] Yields were determined by quantitative GC-FID vs. internal *n*-pentadecane. ^[b] Without CHCI₃.

Optimization experiments with aryl-substituted acetates

Ph 🏑	_OAc + C ₉ ι 1.₄ additior	$50 \text{ mol\% CHCl}_{3}$ $5 \text{ mol\% Fe(OAc)}_{2}$ H ₁₉ MgBr $Et_{2}O, 0 \text{ °C}, 1 \text{ h}$ time 45 min	► PhC ₉ H ₁ 25% (Conv	9 rersion 86%)
Ph 🏑	OAc + C ₉ I 1.2 additior	$H_{19}MgBr \xrightarrow{5 \text{ mol\% Fe}(acac)_2}{Et_2O, 0 °C, 1 h}$ 1 time 10 min	PhC ₉ H ₁₉	
Entry	Change	of reaction conditions	Conversion [%] ^[a]	Yield [%] ^[a]
1		Fe(OAc) ₂	65	9
2	Iron Broouroor	Fe(acac)₂	100	70
3	IION FIECUISO	FeCl ₂	100	53
4		FeBr ₂	100	49
5		12.5 mol% PPh_3	100	61
6		12.5 mol% IPr·HCI	100	67
7		12.5 mol% NEt ₃	100	60
8	Additives	6.25 mol% TMEDA	100	58
9		6.25 mol% DABCO	100	53
10		12.5 mol% CHCl ₃	85	67
11		12.5 mol% Glucosamin·HCl	100	61
12	Addition time Frain	5	100	58
13	Addition time [min	20	100	68

Isolated products

2-methyltridec-2-ene

Synthesized according to procedure A.

C₁₄H₂₈ 196.38 g/mol

¹ H-NMR	(300 MHz, CDCl ₃) δ_{H} [ppm] = 5.18 - 5.06 (m, 1H), 2.01 - 1.90 (m, 2H), 1.69 (d, <i>J</i> = 1.0 Hz, 3H), 1.60 (s, 3H), 1.26 (s, 16H), 0.88 (t, <i>J</i> = 6.7 Hz, 3H).
¹³ C-NMR	(101 MHz, CDCl ₃) δ_{C} [ppm] = 131.1, 125.0, 31.9, 29.9, 29.7, 29.7, 29.6, 29.4, 29.4, 28.1, 25.7, 22.7, 17.6, 14.1.
GC-MS	(EI, 70 eV, m/z): 196 [M]⁺, 111, 97, 83, 69, 56.

The data corresponds to the literature values.¹⁴

dodec-1-ene

Synthesized according to procedure A.

C₉H₁₉

C₁₂H₂₄ 168.32 g/mol

¹**H-NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ [ppm] = 5.82 (ddt, J = 16.9, 10.2, 6.7 Hz, 1H), 4.99 (ddd, J = 17.1, 3.6, 1.6 Hz, 1H), 4.93 (ddt, J = 10.2, 2.2, 1.2 Hz, 1H), 2.08 - 2.00 (m, 2H), 1.41 - 1.22 (m, 16H), 0.88 (t, J = 6.8 Hz, 3H). ¹³**C-NMR** (101 MHz, CDCl₃) $\delta_{\rm C}$ [ppm] = 139.3, 114.1, 33.8, 31.9, 29.6, 29.6,

29.5, 29.4, 29.2, 29.0, 22.7, 14.1.

The data corresponds to the literature values.¹⁵

tridec-2-ene

Synthesized according to procedure A.

C₁₃H₂₆ 182.35 g/mol

¹**H-NMR** (300 MHz, CDCl₃) δ_{H} [ppm] = 5.44 - 5.37 (m, 2H), 2.00 - 1.90 (m, 2H), 1.66 - 1.62 (m, 3H), 1.36 - 1.21 (m, 16H), 0.88 (t, *J* = 6.7 Hz, 3H).

- ¹³**C-NMR** (75 MHz, CDCl₃) δ_{C} [ppm] = 131.7, 124.5, 32.6, 31.9, 31.0, 29.7, 29.7, 29.6, 29.4, 29.2, 22.7, 18.0, 14.1.
- GC-MS (EI, 70 eV, m/z): 182 [M]⁺, 125, 111, 97, 83, 69, 55.

The data corresponds to the literature values.¹⁵

(E)-octadec-7-ene

Synthesized according to procedure A. Product purification by filtration over silica (hexanes).

 $n-C_6H_{13}$ C_2H_5

C₁₁H₂₂ 154.30 g/mol

¹ H-NMR	(300 MHz, CDCl ₃) δ _H [ppm] = 5.45 – 5.30 (m, 2H), 2.06 – 1.84 (m, 4H), 1.38 – 1.21 (m, 10H), 0.88 (t, <i>J</i> = 7.4 Hz, 6H).
¹³ C-NMR	(75 MHz, CDCl ₃) δ_{C} [ppm] = 130.6, 130.1, 34.7, 32.7, 31.8, 29.7, 28.9, 22.8, 22.7, 14.1, 13.7.
GC-HRMS	(EI, 70 eV m/z): found 154.17198 [M] ^{+•} (calculated 154.17160).

(E)-3-methyltridec-2-ene

Synthesized according to procedure A.

ر ل__C₀H₁₀

C₁₄H₂₈ 196.38 g/mol

¹ H-NMR	(300 MHz, Chloroform-d) δ 5.17 – 5.06 (m, 1H), 1.87 (m, 2H), 1.54
	– 1.42 (m, 6H), 1.19 (m, 16H), 0.86 – 0.75 (m, 3H).
¹³ C-NMR	(75 MHz, CDCl3) δ 136.22, 117.93, 39.72, 31.94, 29.67, 29.60, 29.37, 28.02, 22.71, 15.57, 14.14, 13.33.
GC-MS	(EI, 70 eV, m/z): 196 [M] ⁺ , 111, 97, 83, 70, 55.

The data corresponds to the literature values.¹⁵

2-methyldodec-1-ene

Synthesized according to procedure A. The purified product contains octadecane, wherein the separation has failed.

_ _C₉H₁9

C₁₃H₂₆ 182.35 g/mol

¹ H-NMR	(300 MHz, Chloroform-d) δ 4.65 – 4.55 (m, 2H), 1.93 (t, J = 7.5 Hz, 2H), 1.65 – 1.62 (m, 3H), 1.28 – 1.10 (m, 16H), 0.87 – 0.75 (m, 3H).
¹³ C-NMR	(75 MHz, CDCl3) δ 146.4, 109.5, 37.9, 31.9, 29.6, 29.4, 27.7, 22.7, 22.4, 14.1.

GC-MS (EI, 70 eV, m/z): 182 [M]⁺, 154, 126, 111, 97, 83, 69, 56.

The data corresponds to the literature values.¹⁶

(E)-2,6-dimethyldeca-2,6-diene

Synthesized according to procedure A.

C₂H₅

C₁₂H₂₂ 166.31 g/mol

¹H-NMR (300 MHz, Chloroform-d) δ 5.10 – 5.00 (m, 2H), 2.05 – 1.80 (m, 6H), 1.64 – 1.59 (m, 6H), 1.56 – 1.54 (s, 3H) 1.34 – 1.20 (m, 2H), 0.86 – 0.69 (m, 3H).

- ¹³**C-NMR** (75 MHz, CDCl3) δ 135.1, 131.5, 125.4, 124.4, 32.0, 30.0, 26.7, 25.7, 23.4, 23.2, 17.6, 13.9.
- **GC-HRMS** (EI, 70 eV m/z): found 166.17172 [M]^{+•} (calculated 166.17160).

3-ethylcyclohex-1-ene

Synthesized according to procedure A.

C₈H₁₄ 110.20 g/mol

¹ H-NMR	(300 MHz, Chloroform-d) δ 5.72 – 5.51 (m, 2H), 2.03 – 1.89 (m,
	3H), 1.85 – 1.10 (m, 6H), 0.91 (t, J = 7.4 Hz, 3H).
¹³ C-NMR	(75 MHz, CDCl3) δ 132.1, 126.74, 36.9, 29.1, 28.7, 25.5, 21.6,

11.5.

GC-MS (EI, 70 eV, m/z): 110 [M]⁺, 95, 81, 67, 53.

The data corresponds to the literature values.¹⁷

Undecylidenecyclohexane

Synthesized according to procedure A. The purified product contains octadecane, wherein the separation has failed.

C₁₇H₃₂ 236.44 g/mol

- ¹H-NMR (300 MHz, Chloroform-d) δ 5.06 (tt, J = 7.3, 1.3 Hz, 1H), 2.16 1.89 (m, 6H), 1.57 1.41 (m, 6H), 1.26 (m, 16H), 0.94 0.82 (m, 3H).
- ¹³**C-NMR** (75 MHz, CDCl₃) δ_{C} [ppm] = 130.6, 130.1, 34.7, 32.7, 31.8, 29.7, 28.9, 22.8, 22.7, 14.1, 13.7.

GC-HRMS

Allylcyclohexane

Synthesized according to procedure A.

C₉H₁₆ 124.23 g/mol

¹ H-NMR	(300 MHz, Chloroform-d) δ 5.72 (ddt, J = 17.4, 10.4, 7.2 Hz, 1H),
	4.96 – 4.81 (m, 2H), 1.87 (m, 2H), 1.65 (s, 5H), 1.29 – 0.98 (m,
	4H), 0.95 – 0.71 (m, 2H).
¹³ C-NMR	(75 MHz, CDCl3) δ 137.71, 115.13, 41.95, 37.67, 33.07, 26.58, 26.34.
GC-MS	(EI, 70 eV, m/z): 124 [M]⁺, 83, 67, 55.

1-(non-8-en-1-yl)-1*H*-indole

Synthesized according to procedure A. The purified product contains 1-hexyl-1Hindole, wherein the separation has failed.

C₁₇H₂₃N 241.38 g/mol

TLC $R_f = 0.3$ (hexanes/ethylacetate = 200/1)

¹ H-NMR	$(300 \text{ MHz}, \text{Chloroform-d}) \delta 7.62 - 6.91 \text{ (m, 5H)}, 6.41 \text{ (d, J = 3.1 Hz},$
	1H), 5.81 – 5.61 (m, 1H), 4.99 – 4.78 (m, 2H), 4.03 (td, J = 7.1, 2.2
	Hz, 2H), 1.97 (dq, J = 14.1, 7.0 Hz, 2H), 1.83 – 1.68 (m, 2H), 1.35
	– 1.04 (m, 8H).

GC-HRMS (EI, 70 eV, m/z): found 241.1824 [M]^{+•} (calculated 241.1825).

(hept-6-en-1-yloxy)benzene

Synthesized according to procedure A. The purified product contains butoxybenzene, wherein the separation has failed.

C₁₃H₁₈O 190.29 g/mol

- ¹**H-NMR** (300 MHz, Chloroform-d) δ 7.26 7.11 (m, 2H), 6.91 6.73 (m, 3H), 5.74 (ddt, J = 16.9, 10.2, 6.6 Hz, 1H), 5.02 4.80 (m, 2H), 3.88 (t, J = 6.5 Hz, 2H), 2.00 (m, 2H), 1.80 1.62 (m, 2H), 1.40 (m, 4H).
- ¹³**C-NMR** (75 MHz, CDCl3) δ 159.11, 138.85, 129.41, 120.49, 114.50, 67.77, 33.72, 29.18, 28.69, 25.60.
- GC-HRMS (EI, 70 eV m/z): found 190.13483 [M]^{+•} (calculated 190.13522).

(E)-1-phenyldodec-1-ene

Synthesized according to procedure B.

C₁₈H₂₈ 244.42 g/mol

- **TLC** $R_f = 0.8$ (hexanes)
- ¹**H-NMR** (300 MHz, CDCl₃) $\delta_{\rm H}$ [ppm] = 7.41 7.14 (m, 5H), 6.38 (d, J = 15.8 Hz, 1H), 6.23 (dt, J = 15.8, 6.7 Hz, 1H), 2.21 (td, J = 7.7, 1.0 Hz, 2H), 1.56 1.40 (m, 2H), 1.28 (s, 14H), 0.89 (t, J = 6.7 Hz, 3H).
- ¹³**C-NMR** (101 MHz, CDCl₃) δ_{C} [ppm] = 138.0, 131.3, 129.7, 128.5, 126.7, 125.9, 33.1, 31.9, 29.6, 29.6, 29.4, 29.4, 29.4, 22.7, 14.1.
- **GC-MS** (EI, 70 eV, m/z): 244 [M]⁺, 171, 145, 129, 117, 104, 91, 77, 67, 55. The data correspond to the literature values.¹⁸

(E)-1-(4-methylphenyl)-dodec-1-ene

Synthesized according to procedure B. The purified product contains octadecane, wherein the separation has failed.

C₁₉H₃₀ 258.45 g/mol

TLC $R_f = 0.8$ (hexanes)

- ¹**H-NMR** (300 MHz, CDCl₃) δ_{H} [ppm] = 7.26 7.20 (m, 2H), 7.10 (d, J = 8.0 Hz, 2H), 6.38 - 6.30 (m, 1H), 6.17 (dt, J = 15.8, 6.9 Hz, 1H), 2.32 (s, 3H), 2.19 (q, J = 6.8 Hz, 2H), 1.50 - 1.22 (m, 16H), 0.88 (t, J = 6.7 Hz, 3H).
- ¹³**C-NMR** (75 MHz, CDCl₃) δ_{C} [ppm] = 136.4, 135.2, 130.3, 129.5, 129.2, 125.7, 33.1, 32.0, 29.7, 29.7, 29.6, 29.5, 29.4, 29.3, 22.7, 21.2, 14.2.

GC-MS (EI, 70 eV, m/z): 258 [M]⁺, 143, 131, 115, 106, 91, 77, 67, 55. The data correspond to the literature values.¹⁹

(E)-1-(4-methoxyphenyl)-dodec-1-ene

Synthesized according to procedure B. The purified product contains octadecane, wherein the separation has failed.

C₁₉H₃₀O 274.45 g/mol

TLC $R_f = 0.7$ (hexanes)

¹**H-NMR** (300 MHz, CDCl₃) δ_{H} [ppm] = 7.34 - 7.21 (m, 2H), 6.89 - 6.76 (m, 2H), 6.40 - 6.24 (m, 1H), 6.08 (dt, *J* = 15.8, 6.8 Hz, 1H), 3.81 (s, 3H), 2.25 - 2.09 (m, 2H), 1.49 - 1.16 (m, 16H), 0.88 (t, *J* = 6.7 Hz, 3H).

¹³**C-NMR** (75 MHz, CDCl₃) δ_{C} [ppm] = 158.6, 130.8, 129.1, 129.0, 126.9, 113.9, 55.3, 33.1, 32.0, 29.7, 29.7, 29.7, 29.6, 29.4, 29.3, 22.7, 14.2.

GC-MS (EI, 70 eV, m/z): 274 [M]⁺, 159, 147, 134, 121, 103, 91, 78, 67, 55. The data correspond to the literature values.²⁰

(E)-1-(4-chlorophenyl)-dodec-1-ene

Synthesized according to procedure B.

C₁₈H₂₇Cl 278.86 g/mol

TLC $R_f = 0.8$ (hexanes)

- ¹**H-NMR** (300 MHz, Chloroform-d) δ 7.18 (s, 4H), 6.25 (d, J = 15.9 Hz, 1H), 6.12 (dt, J = 15.8, 6.6 Hz, 1H), 2.12 (q, J = 7.0 Hz, 2H), 1.38 (t, J = 7.2 Hz, 2H), 1.29 – 1.14 (m, 14H), 0.88 – 0.73 (m, 3H).
- ¹³C-NMR (75 MHz, CDCl3) δ 136.44, 132.24, 132.02, 128.57, 128.50, 127.09, 33.05, 31.93, 29.64, 29.54, 29.37, 29.31, 29.26, 22.72, 14.15.
- **GC-HRMS** (EI, 70 eV m/z): found 278.17889 [M]^{+•} (calculated 278.17958).

(E)-dodec-1-ene-1,3-diyldibenzene

Synthesized according to procedure B.

C₂₄H₃₂ 320.52 g/mol

TLC $R_f = 0.8$ (hexanes)

¹H-NMR (300 MHz, Chloroform-d) δ 7.33 – 7.02 (m, 10H), 6.38 – 6.17 (m, 2H), 3.32 (q, J = 7.2 Hz, 1H), 1.75 (s, 2H), 1.19 (m, 14H), 0.85 – 0.74 (m, 3H).

¹³C-NMR (75 MHz, CDCl3) δ 144.77, 137.63, 134.51, 129.22, 128.68, 128.47, 128.45, 128.31, 127.64, 126.99, 126.13, 125.74, 49.21, 35.92, 31.90, 29.62, 29.56, 29.33, 27.65, 22.70, 14.14.

GC-HRMS (EI, 70 eV, m/z): found 320.2483 [M]^{+•} (calculated 320.2499).

dodec-1-en-2-ylbenzene

Synthesized according to procedure B.

C₁₈H₂₈ 244.42 g/mol

TLC $R_f = 0.8$ (hexanes)

¹**H-NMR** (300 MHz, Chloroform-d) δ 7.46 – 7.20 (m, 5H), 5.26 (d, J = 1.6 Hz, 1H), 5.05 (q, J = 1.4 Hz, 1H), 2.49 (td, J = 7.4, 1.3 Hz, 2H), 1.44 (s, 1H), 1.43 – 1.19 (m, 15H), 0.93 – 0.82 (m, 3H).

¹³**C-NMR** (75 MHz, CDCl3) δ 148.78, 141.47, 128.21, 127.22, 126.11, 112.00, 35.37, 31.93, 29.63, 29.48, 29.38, 28.28, 22.72, 14.16.

GC-MS (EI, 70 eV, m/z): 244 [M]⁺, 143, 131, 118, 103, 91, 77, 77, 55. The data correspond to the literature values.²¹

(E)-tridec-2-en-1-ylbenzene

Synthesized according to procedure B.

Ph______C₉H₁₉

C₁₉H₃₀ 258.45 g/mol

TLC $R_f = 0.8$ (hexanes)

¹H-NMR (300 MHz, Chloroform-d) δ 7.40 – 7.24 (m, 2H), 7.24 – 7.09 (m, 3H), 5.67 – 5.42 (m, 2H), 3.33 (d, J = 5.3 Hz, 2H), 2.09 – 1.95 (m, 2H), 1.40 – 1.20 (m, 16 H), 0.96 – 0.83 (m, 3H).

¹³C-NMR (75 MHz, CDCl3) δ 141.16, 132.19, 128.64, 128.48, 128.32, 125.84, 39.09, 32.55, 31.95, 29.66, 29.54, 29.51, 29.38, 29.23, 22.73, 14.17.

GC-HRMS (EI, 70 eV, m/z): found 258.2337 [M]^{+•} (calculated 258.2342).

(E)-but-1-en-1-ylbenzene

Synthesized according to procedure B.

Ph _____

C₁₀H₁₂ 132.21 g/mol

TLC $R_f = 0.8$ (hexanes)

- ¹**H-NMR** (300 MHz, Chloroform-d) δ 7.41 7.32 (m, 2H), 7.32 7.14 (m, 3H), 6.45 – 6.33 (m, 1H), 6.28 (dt, J = 15.9, 6.1 Hz, 1H), 2.32 – 2.15 (m, 2H), 1.10 (t, J = 7.5 Hz, 3H).
- ¹³**C-NMR** (75 MHz, CDCl3) δ 137.93, 132.66, 128.76, 128.48, 126.76, 125.90, 26.10, 13.68.
- **GC-MS** R_t = 5.72 min (EI, 70 eV, m/z): 132 [M]⁺, 117, 104, 91, 77, 63, 51.

The data correspond to the literature values.²²

(*E*)-(3-cyclohexylprop-1-en-1-yl)benzene.

Synthesized according to procedure B.

C15H20 200.33 g/mol

¹**H-NMR** (300 MHz, Chloroform-d) δ 7.18 (ddt, J = 27.9, 14.1, 7.3 Hz, 5H), 6.28 (d, J = 15.8 Hz, 1H), 6.14 (dt, J = 15.4, 7.1 Hz, 1H), 2.01 (dd, J = 15.6, 8.7 Hz, 2H), 1.63 (q, J = 13.2, 12.3 Hz, 5H), 1.32 (ddd, J = 11.0, 7.3, 3.6 Hz, 1H), 1.15 (dt, J = 20.3, 7.1 Hz, 3H), 1.00 – 0.74 (m, 2H). ¹³**C-NMR** (75 MHz, CDCl3) δ 137.94, 130.68, 129.78, 128.46, 126.74, 125.91, 41.08, 38.22, 33.23, 26.59, 26.38.

GC-MS (EI, 70 eV, m/z): 200 [M]⁺, 141, 128, 115, 104, 91, 83, 77, 65, 55. The data correspond to the literature values. ²³

(E)-1-(9-phenylnon-8-en-1-yl)-1H-indole

Synthesized according to procedure B.

C₂₃H₂₇N 317.48 g/mol

- **TLC** $R_f = 0.3$ (hexanes/ethylacetate = 200/1)
- ¹H-NMR (300 MHz, Chloroform-d) δ 7.64 (d, J = 7.8 Hz, 1H), 7.40 7.03 (m, 9H), 6.49 (s, 1H), 6.37 (d, J = 15.9 Hz, 1H), 6.21 (dt, J = 15.8, 6.8 Hz, 1H), 4.19 4.01 (m, 2H), 2.26 2.04 (m, 2H), 1.86 (q, J = 8.1, 7.0 Hz, 2H), 1.51 1.39 (m, 2H), 1.38 1.21 (m, 6H).
- ¹³C-NMR (75 MHz, CDCl3) δ 137.87, 135.92, 131.02, 129.80, 128.49, 127.81, 126.80, 125.90, 121.28, 120.93, 119.14, 109.38, 100.82, 46.42, 32.98, 30.26, 29.27, 29.15, 29.07, 26.99.

GC-HRMS (EI, 70 eV m/z): found 317.21286 [M]^{+•} (calculated 317.21380).

(E)-(7-phenoxyhept-1-en-1-yl)benzene

Synthesized according to procedure B.

C19H22O 266.38 g/mol

- **TLC** $R_f = 0.4$ (hexanes/ethylacetate = 200/1)
- ¹**H-NMR** (300 MHz, Chloroform-d) δ 7.40 7.27 (m, 6H), 7.27 7.11 (m, 1H), 7.07 6.84 (m, 3H), 6.46 6.33 (m, 1H), 6.23 (dt, J = 15.8,

6.8 Hz, 1H), 3.97 (t, J = 6.5 Hz, 2H), 2.25 (tdd, J = 7.0, 5.6, 1.4 Hz, 2H), 1.90 – 1.72 (m, 2H), 1.65 – 1.44 (m, 4H).

- ¹³C-NMR (75 MHz, CDCl3) δ 159.05, 137.81, 130.79, 129.97, 129.42, 128.49, 126.83, 125.92, 120.48, 114.47, 67.73, 32.97, 29.19, 29.13, 25.68.
- **GC-HRMS** (EI, 70 eV, m/z): found 266.1661 [M]^{+•} (calculated 266.1665).

Allylbenzene

Synthesized according to procedure B.

C₉H₁₀ 118.18 g/mol

- ¹**H-NMR** (300 MHz, Chloroform-d) δ 7.30 6.96 (m, 5H), 5.89 (m, 1H), 5.09 4.89 (m, 2H), 3.31 (d, J = 6.6 Hz, 2H).
- ¹³C-NMR (75 MHz, CDCl3) δ 140.07, 137.48, 128.61, 128.44, 126.08, 115.80, 40.28.

GC-MS (EI, 70 eV, m/z): 118 [M]⁺, 91, 65.

The data corresponds to the literature values.²⁴

4-allylanisole

Synthesized according to procedure B.

C₁₀H₁₂O 148.21 g/mol

TLC $R_f = 0.6$ (hexanes/ethylacetate 20/1)

¹**H-NMR** (300 MHz, CDCl₃) δ_{H} [ppm] = 7.16 - 7.08 (m, 2H), 6.89 - 6.81 (m, 2H), 5.96 (ddt, *J* = 16.8, 10.4, 6.6 Hz, 1H), 5.12 - 5.06 (m, 1H), 5.04 (d, *J* = 0.7 Hz, 1H), 3.80 (s, 3H), 3.34 (d, *J* = 6.6 Hz, 2H).

¹³**C-NMR** (75 MHz, CDCl₃) δ_{C} [ppm] = 158.0, 137.9, 132.1, 129.5, 115.5, 113.8, 55.3, 39.4.

GC-MS (EI, 70 eV, m/z): 148 [M]⁺.

The data corresponds to the literature values.²⁵

(E)-prop-1-ene-1,3-diyldibenzene

Synthesized according to procedure B.

C₁₅H₁₄ 194.28 g/mol

TLC $R_f = 0.3$ (hexanes)

¹**H-NMR** (300 MHz, CDCl₃) $\delta_{\rm H}$ [ppm] = 7.30 - 7.08 (m, 10H), 6.42 - 6.27 (m, 2H), 3.47 (d, *J* = 6.4 Hz, 2H).

¹³**C-NMR** (75 MHz, CDCl3) δ 140.18, 137.49, 131.09, 129.24, 128.76, 128.51, 127.18, 126.19, 126.14, 39.37.

GC-MS (EI, 70 eV, m/z): 194 [M]⁺, 179, 165, 115, 102, 91, 78, 65, 51.

The data corresponds to the literature values.²⁶

(E)-but-1-ene-1,4-diyldibenzene

Synthesized according to procedure B.

C₁₆H₁₆ 208.30 g/mol

¹**H-NMR** (300 MHz, Chloroform-d) δ 7.32 (m Hz, 10H), 6.47 (d, J = 16.0 Hz, 1H), 6.32 (dt, J = 15.1, 6.7 Hz, 1H), 2.84 (t, J = 7.8 Hz, 2H), 2.58 (q, J = 7.4 Hz, 2H).

- ¹³**C-NMR** (75 MHz, CDCl3) δ 141.78, 137.74, 130.40, 129.99, 128.50, 128.38, 126.96, 126.02, 125.91, 35.91, 34.91.
- **GC-MS** (EI, 70 eV, m/z): 208 [M]⁺, 117, 102, 91, 77, 65, 51.

The data corresponds to the literature values.²⁶

4 Mechanistic Investigations

External Functional Group Test / Effect of electrophiles

OAc + $nC_9H_{19}MgBr$ 1.2 equiv. over 10 min $5 mol\% Fe(OAc)_2$ 1 equiv. additive $Et_2O, 0 °C, 1 h$

A suspension of Fe(OAc)₂ (0.025 mmol, 4.3 mg) in absolute Et₂O (2 mL) was cooled to 0 °C under a nitrogen atmosphere in a flame dried reaction tube. After the addition of freshly distilled allyl acetate (0.5 mmol, 54 μ L) and additive, a 1.0 M *n*-nonylmagnesium bromide solution (0.6 mmol, 0.6 mL) in Et₂O was added dropwise over a period of 10 minutes and the mixture was stirred at 0 °C for 1 hour. The reaction mixture was then hydrolyzed with a saturated NH₄Cl solution and the aqueous phase was extracted with EtOAc. Products were were analyzed via GC-MS and GC-FID.

Entry	Additive	Additive conversion [%] ^a	Yield [%] ^a
1	-	-	77
2	PhCN	0	21
3	<i>n</i> -C₃H ₇ CN	9	49
4	PhNO ₂	90	<1
5	EtNO ₂	87	8
6	PhNH ₂	77	9
7	<i>n</i> -C ₆ H ₁₃ NH ₂	0	80
8	PhCHO	100	16
9	PhCO₂Me	0	82
10	<i>n</i> -C ₃ H ₇ CO ₂ Me	4	72
11	PhOH	0	75 ^b
12	<i>n</i> -C ₅ H ₁₁ OH	6	79 ^b

 $^{\rm a}$ Yields were determined by quantitative GC-FID vs. internal n-pentadecane. $^{\rm b}\,$ 2.2 equiv. n- $C_9H_{19}MgBr.$

OAc	+ nC ₉ H ₁₉ MgBr — 1.4 equiv. over 45 min	5 mol% Fe(OAc) ₂ 1 equiv. additive Et ₂ O, 0 °C, 1 h	►C9H19
Entry	Additive	Yield [%] ^a	Estimated sideproduct ^b
1	-	27	-
2	1,2- Dichloroethane	27	-
3	Chlorobenzene	24	-
4	Chloroform	58	C ₉ H ₁₉ C ₈ H ₁₇
5	Air	37	m/z = 266 C ₉ H ₁₉ OH - H ₂ O m/z = 126 ^c
6	PhCO₂Me	31	$Ph OH OH C_9H_{19} C_9H_{19} - H_2O$ m/z = 342

^a Yields were determined by quantitative GC-FID vs. internal n-pentadecane. ^b Masses recorded by GC-MS. ^c Retention time at 6.0 min vs. actual Nonenes at 3.7-4.0 min.

Kinetic Poisoning

A suspension of Fe(OAc)₂ (0.05 mmol, 8.7 mg) and *n*-pentadecane (0.18 mmol, 50 µL) in absolute Et₂O (4 mL) was cooled to 0 °C under a nitrogen atmosphere in a flame dried schlenk flask. After the addition of freshly distilled allyl acetate (0.50 mmol, 54 µL), a 1.0 M *n*-nonylmagnesium bromide solution (0.50 mmol, 0.5 mL) in Et₂O was added dropwise over a period of 2 minutes and the mixture was stirred at 0 °C. Samples of 0.1 mL were taken out during the reaction and hydrolyzed with a saturated NH₄Cl solution. In case of poisoning, the Hg (5.00 mmol, 148 µL) or Dibenzocyclooctatetrene (dct, 0.25 mmol, 51 mg, dissolved in 0.4 mL absolute Et₂O) respectively was added after 40 seconds. The yields were determined by quantitative GC-FID vs. *n*-pentadecane as internal standard.

Filtration Test

A suspension of $Fe(OAc)_2$ (0.05 mmol, 8.7 mg) in absolute Et_2O (2 mL) was cooled to 0 °C under a nitrogen atmosphere in a flame dried schlenk flask. After the addition of

freshly distilled allyl acetate (0.50 mmol, 54 μ L), a 1.0 M *n*-nonylmagnesium bromide solution (0.50 mmol, 0.5 mL) in Et₂O was added dropwise over a period of 10 minutes and the mixture was stirred at 0 °C for 1 hour. A sample was taken out (Yield coupling product 78%) and the reaction mixture was filtered.

To the filtrate another 0.5 mmol of allyl acetate and *n*-nonylmagnesium bromide (over 10 min) was added at 0 °C and another reaction cycle was run (Yield 2nd cycle filtrate 61%).

The residue of the filtration was washed with absolute Et_2O (2 x 2 mL) and added to 0.5 mmol allyl acetate in 2 mL absolute Et_2O . 0.5 mmol of *n*-nonylmagnesium bromide was added at 0 °C over 10 min and another reaction cycle was run (Yield 2nd cycle residue 45%).

The yields were determined by quantitative GC-FID vs. *n*-pentadecane as internal standard.

The reaction was carried out as described in Protocol A. The crude NMR showed no ring opening of the cyclopropane as no signal evolved at around 6.X ppm, which would indicate the presence of the diene moiety.²⁷

The reaction was carried out as described in a) Protocol A without addition of $CHCl_3$ and b) Protocol B. The Grignard reagent (2% ring closure) and the reactions were

analyzed by GC-MS and GC-FID. When using cinnamylacetate as the starting material, isolation and NMR analysis of the coupling products was possible, showing roughly 15% of additional ring closure.

Stoichiometric Reduction Experiments

For determining the oxidation states of the active catalyst, the following experiments have been done:

A solution of $Fe(OAc)_2$ (17.4 mg, 0.1 mmol) in 1 mL diethylether was mixed with **A**) 1 equiv. or **B**) 2 equiv. of C₉H₁₉MgBr (1 M in diethylether).

 These suspensions were then added dropwise to separate solutions of allylacetate (0.1 mmol) in 1 mL diethylether. In case of A formation of cross coupling product dodecene could be observed (29%), whereas in B only traces could be observed.

To a solution of B was added B1) 0.5 mmol of allylacetate, B2) 0.5 mmol prenyl acetate or B3) 0.2 mmol chloroform and 0.5 mmol prenylacetate. To these solutions was added 0.5 mmol C₉H₁₉MgBr over a period of 1 hour. In case of B1 and B3 catalytic activity was observed, whereas in B2 it was not, showing that allylacetate could possibly reoxidize the catalyst, where in the case of prenylacetate CHCl₃ was necessary as an oxidizing agent.

Hydrogenation Poisoning studies

1-Dodecene (0.25 mmol), 5 mol% Fe(OAc)₂ and 1 equiv. of additive were mixed in a flame dried autoclave vial in an argon-filled glovebox. 10 mol% of C₉H₁₉MgBr was added and the mixture was stirred vigorously for 2 min. The rubber septum was penetrated with a cannula and the reaction vial was put into an autoclave, which was set under a pressure of 3 bar of H₂. The reaction was stirred overnight at r.t. and then quenched with aqueous NH₄Cl solution. The organic phase was extracted with ethyl acetate, dried over sodium sulfate and filtered over a short layer of silica. The yields were determined by quantitative GC-FID vs. *n*-pentadecane as internal standard.

Entry	Additive	Conversion [%]	Yield [%]
1	-	100	77
2	MgBr ₂	19	<1
3	MgCl ₂	100	72
4	LiBr	3	<1

^[a] 25 bar H₂.

References

- G. Rai, C. J. Thomas, W. Leister and D. J. Maloney, *Tetrahedron Lett.*, 2009, 50(15), 1710.
- 2. N. Shimojuh, Y. Imura, K. Moriyama and H. Togo, *Tetrahedron*, 2011, 67(5), 951.
- W. Lölsberg, S. Ye and H.-G. Schmalz, *Adv. Synth. Catal.*, 2010, **352**(11-12), 2023.
- 4. O. Geiseler and J. Podlech, *Tetrahedron*, 2012, **68**(36), 7280.
- 5. D. Francová and G. Kickelbick, *Monatsh. Chem.*, 2009, **140**(4), 413.
- 6. Watson, Iain D G and A. K. Yudin, J. Am. Chem. Soc., 2005, 127(49), 17516.
- 7. S. Magens, M. Ertelt, A. Jatsch and B. Plietker, Org. Lett., 2008, 10(1), 53.
- D. Pan, A. Chen, Y. Su, W. Zhou, S. Li, W. Jia, J. Xiao, Q. Liu, L. Zhang and N. Jiao, *Angew. Chem. Int. Ed.*, 2008, **47**(25), 4729.
- D. D. Rowan, H. P. Lane, J. M. Allen, S. Fielder and M. B. Hunt, *J. Agric. Food Chem.*, 1996, 44(10), 3276.
- 10. N. Marion, R. Gealageas and S. P. Nolan, Org. Lett., 2007, 9(14), 2653.
- 11. M. Brookhart, B. Grant and A. F. Volpe, Organometallics, 1992, 11(11), 3920.
- B. E. Love and E. G. Jones, *The Journal of organic chemistry*, 1999, **64**(10), 3755.
- 13. T. N. Gieshoff, U. Chakraborty, M. Villa and A. Jacobi von Wangelin, *Angew. Chem. Int. Ed.*, 2017, **56**(13), 3585.
- 14. T. Hatakeyama, N. Nakagawa and M. Nakamura, Org. Lett., 2009, 11(20), 4496.
- 15. G. Cahiez, C. Duplais and A. Moyeux, Org. Lett., 2007, 9(17), 3253.
- M. Sada, S. Komagawa, M. Uchiyama, M. Kobata, T. Mizuno, K. Utimoto, K. Oshima and S. Matsubara, *J. Am. Chem. Soc.*, 2010, **132**(49), 17452.
- I. L. Lysenko, K. Kim, H. G. Lee and J. K. Cha, *J. Am. Chem. Soc.*, 2008, 130(47), 15997.
- D. M. Hodgson, M. J. Fleming and S. J. Stanway, *J. Am. Chem. Soc.*, 2004, 126(39), 12250.
- K. Ishizuka, H. Seike, T. Hatakeyama and M. Nakamura, *J. Am. Chem. Soc.*, 2010, **132**(38), 13117.
- 20. A. Krasovskiy and B. H. Lipshutz, Org. Lett., 2011, 13(15), 3818.
- 21. A. Krasovskiy and B. H. Lipshutz, Org. Lett., 2011, 13(15), 3822.
- 22. N. Sakai, T. Moriya and T. Konakahara, J. Org. Chem., 2007, 72(15), 5920.

- 23. V. B. Phapale, M. Guisán-Ceinos, E. Buñuel and D. J. Cárdenas, *Chem. Eur. J.*, 2009, **15**(46), 12681.
- 24. S. K. Pandey, A. E. Greene and J.-F. Poisson, *J. Org. Chem.*, 2007, **72**(20), 7769.
- 25. D. Seomoon, K. Lee, H. Kim and P. H. Lee, *Chem. Eur. J.*, 2007, **13**(18), 5197.
- D. Habrant, B. Stengel, S. Meunier and C. Mioskowski, *Chem. Eur. J.*, 2007, 13(19), 5433.
- 27. K. K. Wang, C. Liu, Y. G. Gu, F. N. Burnett and P. D. Sattsangi, *J. Org. Chem.*, 1991, **56**(5), 1914.