Key role of hydrochar in heterogeneous photocatalytic degradation of sulfamethoxazole using Ag₃PO₄-based photocatalysts

Li Zhou^{a,b}, Min Cai^{a,b}, Xu Zhang^{a,b}, Naxin Cui^{a,b}, Guifa Chen^{a,b}, Guo-yan Zou^{a,b}*

^aInstitute of Eco-environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China;

^bShanghai Engineering Research Centre of Low-carbon Agriculture, Shanghai 201403, China;

Email address: zouguoyan@263.net, joly.zhouli@gmail.com

^{*} Corresponding author at: Eco-environmental protection institute, Shanghai academy of agricultural sciences, Shanghai 201403, China. Tel: +86 18817365817, Fax: +86 02162202448

Fig. S1. Particle size distribution of (a) Ag_3PO_4; (b) $0.05C/Ag_3PO_4$; (c) $0.1C/Ag_3PO_4$; (d) $0.2C/Ag_3PO_4$; and (e) $0.3C/Ag_3PO_4$

Fig. S2. (a) SEM pictures of (a) $0.05C/Ag_3PO_4$; (b) $0.2C/Ag_3PO_4$; and (c) $0.3C/Ag_3PO_4$

Fig. S3. The change of combined toxicity and TOC removal rate during SMX degradation

by Ag₃PO₄ and 0.1C/Ag₃PO₄

It is expected that both the target compound and by-products are degraded completely during the SMX photocatalytic degradation process, so it is important to evaluate the combined toxicity change. As shown in Fig. S3, the inhibition rate on photoacterium V. ginghaiensis sp.-Q67 (Q67) bioluminescence increased gradually from 8.5% to more than 14% for both photocatalysts during the whole photocatalytic process. For 0.1C/Ag₃PO₄, while most of the SMX was degraded after 90 min of irradiation, the inhibition rate of the bacteria bioluminescence decreased from 17.6% to 14.1%, indicating that the intermediate products transformed from the SMX were also degraded with the extended illumination time. Meanwhile, although Ag₃PO₄ was in the process of mainly degrading SMX, the inhibition rate of the bacteria bioluminescence still increased from 16.2% to 18.0%. Our group also observed a similar photocatalytic-degradation phenomenon of the SMX solution by other Ag_3PO_4 -based composites under visible light illumination ^{1, 2}. Thus, The intermediate products are more difficult to degrade and have higher toxicity than the target SMX. After 90 min of irradiation, the TOC removal rate is 52.91% for 0.1C/Ag₃PO₄ and 41.66% for pure Ag₃PO₄. The higher TOC removal rate contributed to the enhancement of the photocatalytic activity of 0.1C/Ag₃PO₄ due to the incorporation of hydrochar.

Fig. S4. Removal of SMX under various reaction conditions (a); and photocatalytic rate of $0.1C/Ag_3PO_4$ and $H_2O_2+0.1C/Ag_3PO_4$ under visible light irradiation (b).

As shown in Fig. S4(a) and (b), with the photocatalyst $0.1C/Ag_3PO_4$ under visible light, the addition of 10-mM H₂O₂ can enhance the photocatalytic activity of SMX degradation. The removal rate was 0.091 min⁻¹, which is 1.2 times of the only photocatalyst under visible light. A similar result was obtained from other Ag₃PO₄-based composite photocatalysts. For example, the RhB removal rate of 15 wt% Ag₃PO₄-Bi₂MoO₆-H₂O₂ system (k=0.03585 min⁻¹) is 7.2 times of only 15 wt% Ag₃PO₄-Bi₂MoO₆ (k=0.005 min⁻¹) under visible light ³. The addition of H₂O₂ could affect the photocatalytic process in two aspects. Firstly, the H₂O₂ is prone to adsorb on the catalyst surface, and the adsorbed H₂O₂ would react with holes on the catalyst surface, as shown in Eq ⁴:

$$H_2O_2 + h^+ \rightarrow O_2^- + 2H^+$$
 (+1.71 V vs. NHE).⁵

Consumption of holes by adsorbed H_2O_2 could result in a retarded SMX photocatalytic degradation. On the other hand, as electron scavengers, H_2O_2 could react with electrons as shown in Eq. ⁶

$$H_2O_2 + e^- \rightarrow \cdot OH + OH^-$$
 (+0.87 V vs. NHE)⁵.

which would increase the separation efficiency of photogenerated electrons and holes and thus facilitate the activity by synergetic effects.

In this case, the reasons of enhanced performance of the $0.1C/Ag_3PO_4-H_2O_2$ system may be assigned to two aspects. The first reason is that it is easier for holes produced in the photocatalyst valence band to contact with SMX than with adsorbed H₂O₂⁷, because the potential difference between the valence band (VB) of Ag₃PO₄ and O_2^{-}/H_2O_2 (+1.71 V/NHE) ⁵ (Δ E=1.19 V) is small compared to the difference between the potential of the VB of Ag₃PO₄ and the oxidation potential of SMX (0.9 V) ⁸ (Δ E=2.0 V). The other reason is that the biochar facilitates the transfer of electrons produced in the conduction band (CB) of the photocatalyst, and the transferred electrons could be trapped preferentially by H₂O₂ to form ·OH. This is because of the larger potential difference between the CB reduction potential of Ag₃PO₄ and O₂/H₂O₂ (Δ E =0.42 V) compared to the CB reduction potential of Ag₃PO₄ and O₂/H₂O₂ (Δ E =0.245 V), which benefits the electron-trapping process of H₂O₂. According to the above analysis, the enhanced photocatalytic activity of the 0.1C/Ag₃PO₄-H₂O₂ system is complementary evidence that holes are the crucial radicals to oxide SMX in this case.

References

- 1 L. Zhou, W. Zhang, L. Chen and H. Deng, *Journal of Colloid and Interface Science*, 2017, **487**, 410-417.
- 2 L. Zhou, W. Zhang, L. Chen, H. Deng and J. Wan, *Catalysis Communications*, 2017, **100**, 191-195.
- 3 X. Du, J. Wan, J. Jia, C. Pan, X. Hu, J. Fan and E. Liu, *Materials & Design*, 2017, **119**, 113-123.
- 4 V. Auguliaro, E. Davì, L. Palmisano, M. Schiavello and A. Sclafani, *Applied Catalysis*, 1990, **65**, 101-116.
- 5 B. H. J. Bielski, D. E. Cabelli, R. L. Arudi and A. B. Ross, *Journal of Physical and Chemical Reference Data*, 1985, **14**, 1041-1100.
- 6 E. S. Elmolla and M. Chaudhuri, *Desalination*, 2010, **252**, 46-52.
- 7 R. Hou, X. Chen, Y. Gao, H. Zhu, S. Li, H. Li and Y. Huo, *Chemistryselect*, 2016, 1, 1000-1003.
- 8 F. Gagné, C. Blaise and C. André, *Ecotoxicology and Environmental Safety*, 2006, 64, 329-336.