Structure and electrochemical performance modulation of

LiNi_{0.8}Co_{0.1}Mn_{0.1}O₂ cathode material by anion and cation co-doping for lithium ion battery

Rong Li^a, Yong Ming^a, Wei Xiang^b, Chunliu Xu^a, Guilin Feng^a, Yongchun Li^a,

Yanxiao Chen^a, Zhenguo Wu^{a*,c}, Benhe Zhong^a, Xiaodong Guo^{a,d}

^a College of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China;

^b College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, PR China;

^cState Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 (PR China);

^d Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW 2522, Australia;

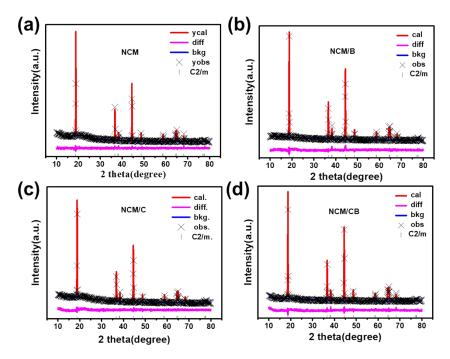


Fig.S1 Rietveld refinement results of NCM(a), NCM/B(b), NCM/C(c) and NCM/CB(d)

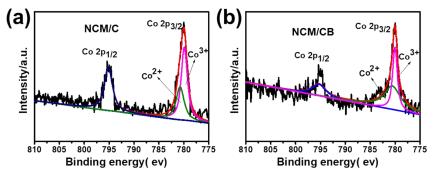


Fig.S2 XPS spectra of Co for (d) NCM/C and (f) NCM/CB.

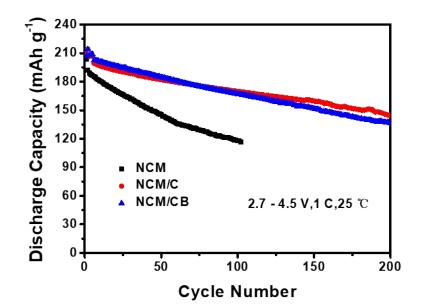


Fig.S3 cycle performance at high voltage

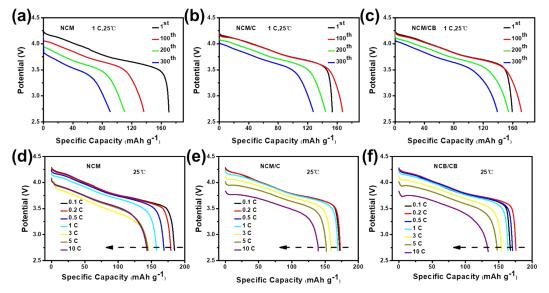


Fig.S4 The Corresponding charge/discharge curves at the 1st, 5th, 50th and 100th cycle for NCM(a), NCM/C(b) and NCM/CB(c). The rate discharge curves between 0.1-10 C of NCM(d), NCM/C(e) and NCM/CB(f).