Supporting Information

Environmentally Benign, Facile and Selective Recovery of Gold from Aqueous medium: Synergic Role of Carbon Dots as Green Reductant and Sensor towards Au³⁺ Ions

Kaviyarasan Raji,^a Vadivel Ramanan,^b Senthil Kumar Thiyagarajan,^a and Perumal Ramamurthy^{*a}

aNational Centre for Ultrafast Processes, University of Madras, Taramani Campus, Chennai 600113, Tamil Nadu, India.

^bForensic Sciences Department, Government of Tamil Nadu, Chennai - 600004, Tamil Nadu, India.

*Corresponding author E-mail Address: prm60@hotmail.com

CONTENTS

Table S1	:	Slope method for the calculation of PL quantum yield of N,S-CDs.
Table S2	:	Parameters obtained from the fitting of PL decays at various emission wavelengths (λ_{ex} : 375 nm LED).
Table S3	:	Comparison of the present probe with existing Au ³⁺ probes
Figure S1	:	Zeta potential of the N,S-CDs.
Figure S2	:	Normalized PL spectra of N,S-CDs excited at various wavelengths.
Figure S3	:	Slope method for the calculation of PL QY.
Figure S4		SAED pattern of obtained Au NPs and corresponding d-spacing values.

Fig. S1 Zeta potential of the N,S-CDs,

N,S-CDs excited at various wavelengths.

Table S1. Slope method for the calculation of PL QY of N,S-CDs.

Fluorescer	Slope	QY	QY (%)	Reduced R ²
Quinine Sulphate	1.08 x 10 ¹⁰	0.5460	54.60 (Known)	0.99
N,S-CDs	4.45 x 10 ⁹	0.2382	23.82	0.99

S.No	λ_{em}	τ ₁ (ns)	τ ₂ (ns)	τ ₃ (ns)	A ₁ (%)	A ₂ (%)	A ₃ (%)	τ _{Average} (ns)	χ²
1	400	0.69	3.22	8.52	9.65	52.79	37.57	2.88	1.11
2	425	0.66	3.33	8.57	8.39	49.86	41.75	3.08	1.14
3	450	0.69	3.55	9.25	7.71	49.25	43.03	3.38	1.12
4	500	0.56	3.14	9.06	7.05	39.52	53.43	3.23	1.18
5	550	0.47	2.90	9.18	9.06	37.29	53.65	2.64	1.11
6	600	0.41	2.48	8.39	12.20	35.11	52.69	1.99	1.17

Table S2. Parameters obtained from the fitting of PL decays at various emission wavelengths (λ_{ex} : 375 nm LED).

Fig. S4 SAED pattern of obtained Au NPs and corresponding d-spacing values.

S. No.	Fluorescence Probe	Solvent	LOD	Ref.
1	Rhodamine-based modified polyacrylic acid	0.01 M TBAPF ₆ in DMSO	11.40 µM	1
2	4-propargylamino-1,8- naphthalimide based probe	PBS buffer (4% C ₂ H ₅ OH)	8.44 μM	2
3	Fluorol Red GK	CH ³ CN-HEPES buffer (10 mmol L ⁻¹ , pH 7.4, $v : v = 1 : 1$)	1.23 μM	3
4	Rhodamine-based modified polyacrylic acid-coated FeNPs	0.01 M TBAPF ₆ in DMSO	0.85 µM	1
5	Graphene oxide-poly(vinyl alcohol) Hybrid	Water	0.7 μΜ	4
6	Rhodamine-alkyne derivative	C ₂ H ₅ OH-HEPES buffer (0.01 M, pH 7.4) (1:1, v/v)	0.5 μΜ	5
7	Rhodamine-derived N-propargyl- spirolactam P1	5 mM HEPES buffer containing 0.25% DMSO, pH 7.4	0.4 µM	6
8	Thioamide-phenyl-substituted alkyne	phosphate buffer/C ₂ H ₅ OH (3:7, pH 7.0)	390 nM	7
9	Bodipy derivative	PBS buffer (50 % ethanol)	320 nM	8
10	Rhodamine-based semicarbazide	PBS buffer (0.3% DMF)	290 nM	9
11	Thiocoumarin derivative	CH ₃ CN-acetate buffer solution (1:1, v/v)	111 nM	10
12	Rhodamine-based semicarbazide	PBS buffer (10% CH ₃ OH)	74 nM	9
13	Rhodamine/BODIPY based	1:1 CH ₃ CN/HEPES buffer (pH 7.0)	65 nM	11
14	Rhodamine based probe	PBS buffer (1% CH ₃ OH)	50 nM	12
15	Rhodamine 6G hydrazide	H2O/ C ₂ H ₅ OH, 7 : 3 (v/v)	48 nM	13
16	BODIPY based	1:1 phosphate buffer (0.1 M)/ C ₂ H ₅ OH, pH 7.0	44 nM	14
17	diketopyrrolopyrrole-based	Water	18 nM	15
18	Rhodamine derivatives	C ₂ H ₅ OH: water, 7:3 (v/v), 0.1 M HEPES buffer, pH 7.4	0.5 nM	16
19	N-CDs	Water	64 nM	Ref. 40 in the main article
20	CDs	Water	3.03 µM	17
21	N-CDs	Water	239 nM	Ref. 42 in the main article
22	CDs	Water	53 nM	Ref. 41 in the main article
23	GQDs	Water	50 nM	Ref. 48 in the main article
24	N,S-CDs	Water	252 nM	Present work

Table S3. Comparison of the present probe with existing Au^{3+} probes.

REFERENCES

- N. Niamsa, C. Kaewtong, W. Srinonmuang, B. Wanno, B. Pulpoka and T. Tuntulani, *Polymer Chemistry*, 2013, 4, 3039-3046.
- J. Y. Choi, G.-H. Kim, Z. Guo, H. Y. Lee, K. Swamy, J. Pai, S. Shin, I. Shin and J. Yoon, Biosensors and Bioelectronics, 2013, 49, 438-441.
- 3. Y. Yang, C. Yin, F. Huo and J. Chao, RSC Advances, 2013, 3, 9637-9640.
- A. Kundu, R. K. Layek, A. Kuila and A. K. Nandi, ACS applied materials & interfaces, 2012, 4, 5576-5582.
- M. J. Jou, X. Chen, K. Swamy, H. N. Kim, H.-J. Kim, S.-g. Lee and J. Yoon, *Chemical Communications*, 2009, 7218-7220.
- H. Seo, M. E. Jun, O. A. Egorova, K.-H. Lee, K.-T. Kim and K. H. Ahn, Organic letters, 2012, 14, 5062-5065.
- 7. X. Cao, W. Lin and Y. Ding, Chemistry-A European Journal, 2011, 17, 9066-9069.
- J.-B. Wang, Q.-Q. Wu, Y.-Z. Min, Y.-Z. Liu and Q.-H. Song, *Chemical Communications*, 2012, 48, 744-746.
- 9. L. Yuan, W. Lin, Y. Yang and J. Song, Chemical Communications, 2011, 47, 4703-4705.
- 10. J. E. Park, M. G. Choi and S.-K. Chang, Inorganic chemistry, 2012, 51, 2880-2884.
- E. Karakuş, M. Üçüncü and M. Emrullahoğlu, *Chemical Communications*, 2014, 50, 1119-1121.
- 12. Y.-K. Yang, S. Lee and J. Tae, Organic letters, 2009, 11, 5610-5613.
- J. Wang, W. Lin, L. Yuan, J. Song and W. Gao, *Chemical Communications*, 2011, 47, 12506-12508.
- 14. M. Üçüncü and M. Emrullahoğlu, Chemical Communications, 2014, 50, 5884-5886.

- 15. X. Yang, Y. Li, Z. Zhao, Y. Ding, Y. Zhang, X. Liu, Y. Cui, G. Sun, G. Zhang and M. Yan, *New Journal of Chemistry*, 2017, **41**, 5055-5060.
- S. Adhikari, S. Mandal, A. Ghosh, P. Das and D. Das, *The Journal of organic chemistry*, 2015, **80**, 8530-8538.
- 17. W. Gao, H. Song, X. Wang, X. Liu, X. Pang, Y. Zhou, B. Gao and X. Peng, *ACS applied materials & interfaces*, 2017, **10**, 1147-1154.